精子发生
减数分裂
生物
人口
精子
男科
内分泌学
内科学
遗传学
医学
基因
环境卫生
作者
Yan Gao,Dai‐Min Zhang,Pu Wang,Xing Qu,Jin‐Fu Xu,Yang Yu,Xue Zhou
标识
DOI:10.1177/09603271231188293
摘要
Background: Baked carbohydrate-rich foods are the main source of acrylamide (AA) in the general population and are widely consumed by teenagers. Considering the crucial development of the reproductive system during puberty, the health risks posed by AA in adolescent males have raised public concern.Methods: In this study, we exposed 3-week-old male pubertal mice to AA for 4 weeks to evaluate its effect on spermatogenesis using computer-assisted sperm analysis (CASA) and historical analysis. Flow cytometric analysis and meiocyte spreading assay were conducted to assess meiosis in mice. The expression of meiosis-related proteins and double-strand break (DSB) proteins were evaluated by immunoblot analyses. Additionally, isolated spermatocytes were used to explore the role of resveratrol in AA-induced damages of meiosis.Results: Our results showed that AA decreased the testicular and epididymal indexes, reduced sperm count and motility, and induced morphological disruption of the testes in pubertal mice. Subsequent meiotic analysis revealed that AA increased the proportion of 4C spermatocytes and decreased the proportion of 1C spermatids. The expression levels of meiosis-related proteins (SYCP3, Cyclin A1 and CDK2) were downregulated, and signaling proteins (γH2AX, p-CHK2 and p-ATM) expression levels were upregulated in AA-treated mice testes. Similar expression patterns were observed in primary spermatocytes treated with AA and these effects were reversed significantly by resveratrol.Conclusions: Our results indicate that AA induces meiotic arrest via persistent activation of DSBs, which may contribute to AA-compromised spermatogenesis. Resveratrol could serve as a potential therapeutic agent against AA-induced meiotic toxicity. These data highlight the importance of natural product supplementation for treating AA-related reproductive toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI