计算机科学
合并(版本控制)
雷达
探地雷达
稳健性(进化)
数据挖掘
合成数据
算法
训练集
人工智能
遥感
地质学
电信
情报检索
生物化学
化学
基因
作者
Giacomo Roncoroni,Emanuele Forte,Ilaria Santin,M. Pipan
出处
期刊:Geophysics
[Society of Exploration Geophysicists]
日期:2023-12-07
卷期号:89 (1): F1-F9
标识
DOI:10.1190/geo2023-0215.1
摘要
Ground-penetrating radar systems with a single central frequency suffer limitations due to the unavoidable trade-off between resolution and penetration depth that multifrequency equipments can overcome. A new semisupervised multifrequency merging algorithm was developed based on deep learning and specifically on bi-directional long-short term memory to automatically merge varying numbers of data sets collected at different frequencies. A new training strategy, based only on the data set of interest, without synthetic or real training data sets was implemented. The proposed methodology is tested on synthetic and field data, to evaluate its performance and robustness. The merging algorithm can manage the complementarity of information at different central frequencies, properly merging different types of data. Results indicate not only a smooth transition in time, but, even more important, a remarkable broadening of the bandwidth thus increasing the overall resolution. Our approach is not limited to specific frequency components or geologic settings but can be potentially exploited to merge any type of data set with different spectral components.
科研通智能强力驱动
Strongly Powered by AbleSci AI