期货合约
非线性系统
强化学习
计量经济学
结对贸易
协整
计算机科学
均值回归
交易策略
经济
钢筋
人工智能
算法交易
金融经济学
工程类
另类交易系统
物理
量子力学
结构工程
作者
Jianhe Liu,Luze Lu,Xiangyu Zong,Baao Xie
标识
DOI:10.1016/j.frl.2023.104477
摘要
The pairs trading strategy involves selecting two highly correlated securities to profit from mean reversion. However, the traditional simple threshold method is subjective, random, and ignores nonlinear relationships. This paper proposes a new cointegration deep reinforcement learning (DRL) pairs trading model applied to Dalian Commodity Exchange futures to capture nonlinear relationships and gain profits. The CA-DRL model outperforms other models in terms of efficiency and performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI