Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects

乙酰化 表观遗传学 疾病 生物 染色质重塑 染色质 功能(生物学) 癌症 生物信息学 计算生物学 医学 细胞生物学 遗传学 基因 病理
作者
Nan Jiang,Wenyong Li,Shuanglin Jiang,Min Xie,Ran Liu
出处
期刊:Biomedicine & Pharmacotherapy [Elsevier]
卷期号:167: 115519-115519
标识
DOI:10.1016/j.biopha.2023.115519
摘要

Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶芙不喜欢腻完成签到 ,获得积分10
1秒前
幽默妙柏发布了新的文献求助10
2秒前
2秒前
3秒前
茶博士发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
5秒前
负责觅波发布了新的文献求助10
7秒前
薯条完成签到,获得积分10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
8秒前
InfoNinja应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
8秒前
rong发布了新的文献求助10
8秒前
背后橘子发布了新的文献求助10
9秒前
隐形曼青应助Bobo采纳,获得10
10秒前
爱吃麻辣烫应助zfczfc采纳,获得10
10秒前
10秒前
12秒前
薯条发布了新的文献求助10
12秒前
重庆马思纯完成签到,获得积分10
13秒前
幽默妙柏完成签到,获得积分20
13秒前
14秒前
回到原点应助魁梧的灵枫采纳,获得10
14秒前
15秒前
FashionBoy应助rong采纳,获得10
15秒前
15秒前
erkin发布了新的文献求助10
16秒前
飞雪完成签到,获得积分10
16秒前
19秒前
19秒前
叙温雨发布了新的文献求助10
21秒前
21秒前
赘婿应助友好冥王星采纳,获得10
22秒前
不买版权你出什么成果完成签到 ,获得积分10
22秒前
Akim应助机智水杯采纳,获得10
24秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149477
求助须知:如何正确求助?哪些是违规求助? 2800533
关于积分的说明 7840390
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308241
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706