亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of raffinose family oligosaccharides in processed Rehmannia glutinosa Libosch using matrix‐assisted laser desorption/ionization mass spectrometry image combined with machine learning

热气腾腾的 地黄 化学 质谱法 色谱法 人工智能 主成分分析 基质辅助激光解吸/电离 分析化学(期刊) 模式识别(心理学) 生物系统 解吸 食品科学 计算机科学 医学 生物 替代医学 有机化学 病理 中医药 吸附
作者
Huizhi Li,Shishan Zhang,Yanfang Zhao,Jixiang He,Xiangfeng Chen
出处
期刊:Rapid Communications in Mass Spectrometry [Wiley]
卷期号:37 (22) 被引量:1
标识
DOI:10.1002/rcm.9635
摘要

Currently, research on oligosaccharides primarily focuses on the physiological activity and function, with a few studies elaborating on the spatial distribution characterization and variation in the processing of Rehmannia glutinosa Libosch. Thus, imaging the spatial distributions and dynamic changes in oligosaccharides during the steaming process is significant for characterizing the metabolic networks of R. glutinosa. It will be beneficial to characterize the impact of steaming on the active ingredients and distribution patterns in different parts of the plant.A highly sensitive matrix-assisted laser desorption/ionization mass spectrometry image (MALDI-MSI) method was used to visualize the spatial distribution of oligosaccharides in processed R. glutinosa. Furthermore, machine learning was used to distinguish the processed R. glutinosa samples obtained under different steaming conditions.Imaging results showed that the oligosaccharides in the fresh R. glutinosa were mainly distributed in the cortex and xylem. As steaming progressed, the tetra- and pentasaccharides were hydrolyzed and diffused gradually into the tissue section. MALDI-MS profiling combined with machine learning was used to identify the processed R. glutinosa samples accurately at different steaming intervals. Eight algorithms were used to build classification machine learning models, which were evaluated for accuracy, precision, recall, and F1 score. The linear discriminant analysis and random forest models performed the best, with prediction accuracies of 0.98 and 0.97, respectively, and thus can be considered for identifying the steaming durations of R. glutinosa.MALDI-MSI combined with machine learning can be used to visualize the distribution of oligosaccharides and identify the processed samples after steaming for different durations. This can enhance our understanding of the metabolic changes that occur during the steaming process of R. glutinosa; meanwhile, it is expected to provide a theoretical reference for the standardization and modernization of processing in the field of medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling361完成签到,获得积分10
刚刚
刚刚
碳酸芙兰完成签到,获得积分10
4秒前
4秒前
高强完成签到,获得积分10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
卷卷完成签到 ,获得积分10
8秒前
高强发布了新的文献求助10
9秒前
易殇完成签到,获得积分20
10秒前
思源应助科研小白采纳,获得10
11秒前
13秒前
YOLO完成签到 ,获得积分10
15秒前
华仔应助adfadf采纳,获得10
17秒前
18秒前
18秒前
choyng完成签到,获得积分10
18秒前
choyng发布了新的文献求助30
22秒前
QQ完成签到,获得积分20
22秒前
23秒前
科研小白发布了新的文献求助10
26秒前
27秒前
adfadf发布了新的文献求助10
31秒前
33秒前
xiong完成签到 ,获得积分10
33秒前
长情黄蜂发布了新的文献求助10
37秒前
41秒前
50秒前
狼啸天应助Hu采纳,获得10
52秒前
54秒前
vicky发布了新的文献求助10
57秒前
58秒前
努力的扣扣酱完成签到 ,获得积分10
1分钟前
眯眯眼的黎昕完成签到 ,获得积分10
1分钟前
可爱的函函应助vicky采纳,获得10
1分钟前
1分钟前
樱桃猴子完成签到,获得积分10
1分钟前
陶醉的烤鸡完成签到,获得积分10
1分钟前
隐形曼青应助gggyyy采纳,获得10
1分钟前
天天快乐应助科研小白采纳,获得10
1分钟前
家湘发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832