Identification of raffinose family oligosaccharides in processed Rehmannia glutinosa Libosch using matrix‐assisted laser desorption/ionization mass spectrometry image combined with machine learning

热气腾腾的 地黄 化学 质谱法 色谱法 人工智能 主成分分析 基质辅助激光解吸/电离 分析化学(期刊) 模式识别(心理学) 生物系统 解吸 食品科学 计算机科学 医学 生物 替代医学 有机化学 病理 中医药 吸附
作者
Huizhi Li,Shishan Zhang,Yanfang Zhao,Jixiang He,Xiangfeng Chen
出处
期刊:Rapid Communications in Mass Spectrometry [Wiley]
卷期号:37 (22) 被引量:1
标识
DOI:10.1002/rcm.9635
摘要

Currently, research on oligosaccharides primarily focuses on the physiological activity and function, with a few studies elaborating on the spatial distribution characterization and variation in the processing of Rehmannia glutinosa Libosch. Thus, imaging the spatial distributions and dynamic changes in oligosaccharides during the steaming process is significant for characterizing the metabolic networks of R. glutinosa. It will be beneficial to characterize the impact of steaming on the active ingredients and distribution patterns in different parts of the plant.A highly sensitive matrix-assisted laser desorption/ionization mass spectrometry image (MALDI-MSI) method was used to visualize the spatial distribution of oligosaccharides in processed R. glutinosa. Furthermore, machine learning was used to distinguish the processed R. glutinosa samples obtained under different steaming conditions.Imaging results showed that the oligosaccharides in the fresh R. glutinosa were mainly distributed in the cortex and xylem. As steaming progressed, the tetra- and pentasaccharides were hydrolyzed and diffused gradually into the tissue section. MALDI-MS profiling combined with machine learning was used to identify the processed R. glutinosa samples accurately at different steaming intervals. Eight algorithms were used to build classification machine learning models, which were evaluated for accuracy, precision, recall, and F1 score. The linear discriminant analysis and random forest models performed the best, with prediction accuracies of 0.98 and 0.97, respectively, and thus can be considered for identifying the steaming durations of R. glutinosa.MALDI-MSI combined with machine learning can be used to visualize the distribution of oligosaccharides and identify the processed samples after steaming for different durations. This can enhance our understanding of the metabolic changes that occur during the steaming process of R. glutinosa; meanwhile, it is expected to provide a theoretical reference for the standardization and modernization of processing in the field of medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助皇甫契采纳,获得10
1秒前
崔宁宁完成签到 ,获得积分10
3秒前
7秒前
乘风破浪完成签到 ,获得积分10
8秒前
几几完成签到,获得积分10
9秒前
追寻绮烟发布了新的文献求助10
13秒前
春夏秋冬完成签到,获得积分10
14秒前
轩辕德地完成签到,获得积分10
19秒前
完美世界应助追寻绮烟采纳,获得10
19秒前
完美世界应助zhang采纳,获得10
20秒前
馒头完成签到 ,获得积分10
21秒前
mit完成签到 ,获得积分10
22秒前
阿秋秋秋完成签到 ,获得积分10
23秒前
青桔完成签到,获得积分10
25秒前
贪玩的醉波完成签到,获得积分10
26秒前
巾凡完成签到 ,获得积分0
29秒前
个性问寒完成签到,获得积分10
29秒前
daisy完成签到 ,获得积分10
32秒前
34秒前
35秒前
小Q发布了新的文献求助10
37秒前
zhang发布了新的文献求助10
40秒前
老宇126完成签到,获得积分10
41秒前
43秒前
爱因斯坦那个和我一样的科学家完成签到 ,获得积分10
44秒前
科研小笨猪完成签到,获得积分10
46秒前
0713完成签到,获得积分10
46秒前
皇甫契发布了新的文献求助10
47秒前
挽风风风风完成签到 ,获得积分10
47秒前
sa完成签到 ,获得积分10
47秒前
xiaoluuu完成签到 ,获得积分10
52秒前
Yara.H完成签到 ,获得积分10
54秒前
零零二完成签到 ,获得积分10
56秒前
高高的从波完成签到,获得积分10
57秒前
美丽的鞋垫完成签到 ,获得积分10
57秒前
10完成签到 ,获得积分10
1分钟前
欢喜板凳完成签到 ,获得积分10
1分钟前
典雅三颜完成签到 ,获得积分10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
celia完成签到 ,获得积分10
1分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944456
捐赠科研通 2720147
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862