劈形算符
数学
基态
索波列夫空间
兰姆达
类型(生物学)
乘数(经济学)
组合数学
数学物理
数学分析
物理
欧米茄
量子力学
生态学
生物
宏观经济学
经济
出处
期刊:Advances in Differential Equations
日期:2023-09-20
卷期号:29 (1/2)
被引量:1
标识
DOI:10.57262/ade029-0102-111
摘要
In this paper, we consider the following Kirchhoff type equation \begin{equation*} \begin{cases} - \displaystyle \Big ( a+b\int_{\mathbb{R}^3}|\nabla u|^2 \Big ) \Delta u-\lambda u=f(u), & \textrm{in}\,\,\mathbb{R}^3,\\[3mm] u\in H^1(\mathbb{R}^3), \end{cases} \end{equation*} with an $L^2$ constraint $\int_{\mathbb{R}^3}|u|^2dx=m$, where $a,b,m > 0$, $\lambda\in\mathbb{R}$ will arise as a Lagrange multiplier and the nonlinearity $f$ is merely continuous and satisfies general mass supercritical conditions. Both in the Sobolev subcritical and critical cases, we establish the existence of ground states to this problem and derive some basic behavior of the ground state energy $E_m$ when $m > 0$ varies. Our results generalize and improve the ones in [L. Jeanjean, S.-S. Lu, Calc. Var. 59, 174 (2020)] and other related literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI