Advanced Porous Transport Layers for PEM Water Electrolyzers: Impact of the Interfacial and Bulk Properties of the PTLs on the Electrolyzers Performance

质子交换膜燃料电池 材料科学 催化作用 可再生能源 化学工程 阳极 制氢 接触电阻 多孔性 图层(电子) 纳米技术 复合材料 电极 化学 工程类 物理化学 电气工程 生物化学
作者
Zhiqiao Zeng,Stoyan Bliznakov,Leonard J. Bonville,Radenka Marić
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (36): 2056-2056 被引量:2
标识
DOI:10.1149/ma2023-01362056mtgabs
摘要

Proton exchange membrane water electrolyzers (PEMWEs) are widely seen as a crucial technology for integration with renewable energy sources to convert the generated electricity to green hydrogen, which is a clean and sustainable energy carrier. 1 However, their high capital cost and operational expenditures increase the production cost of green H 2 . 2 To make the technology economically competitive and boost its market penetration, DOE implemented targets of $2 kg -1 by 2025 and $1 kg -1 hydrogen by 2030. 3 The interfacial and bulk properties of the porous transport layer (PTL) are vital to the PEMWEs performance. 4–6 The optimal bulk properties of PTL improve cell performance mainly by improving the mass transport, while the reduced interfacial contact resistance between the anode catalyst layer and PTL, also enhances the catalyst utilization, allowing for a reduction of the precious metal loading. Further reduction of the interfacial contact resistance between the PTL and the catalyst layer is of crucial importance for increasing the efficiency of the PEMWEs, as well as for decreasing the production cost of green H 2 . In this study, an innovative reactive spray deposition technology (RSDT) is used to fabricate catalyst-coated membranes (CCMs) and catalyst-coated electrodes (CCEs) with ultra-low PGM loading (0.2 - 0.3 mg PGM cm -2 ) in both catalyst layers. The RSDT is a flame-based method that combines the synthesis and deposition of the catalyst in a single step, which results in a significant reduction of the MEA fabrication time and cost, respectively. 7–9 A set of commercially available Ti PTLs with various thicknesses and porosities have been used to assemble single cells as fabricated MEAs, and their performance has been assessed and compared to the state-of-the-art MEAs for PEMWEs. In addition, the impact of the thickness and porosity of the PTL, as well as the interfacial contact resistance between the PTL and catalyst layer for both single-cell PEMWE configurations (CCMs and CCEs) have been investigated. The performance loss in each cell configuration has been identified and discussed in detail. Furthermore, a standard accelerated stress test (AST) protocol has been applied to assess the durability of the RSDT-fabricated MEAs, with one order of magnitude lower PGM loading in their catalyst layers in comparison to the best reported in the literature MEAs for PEMWEs. Reference 1. Carmo, M. et al. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). 2. Babic, U. et al. Critical Review — Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development Review — Identifying Critical Gaps for Polymer Electrolyte Water. (2017) doi:10.1149/2.1441704jes. 3. https://www.energy.gov/eere/fuelcells/hydrogen-shot 4. Peng, X. et al. Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra-Low Iridium Loadings. Adv. Sci. 8, 1–9 (2021). 5. Bühler, M. et al. Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers. J. Mater. Chem. A 7, 26984–26995 (2019). 6. Kulkarni, D. et al. Elucidating effects of catalyst loadings and porous transport layer morphologies on the operation of proton exchange membrane water electrolyzers. Appl. Catal. B Environ. 308, 121213 (2022). 7. Zeng, Z. et al. Degradation Mechanisms in Advanced MEAs for PEM Water Electrolyzers Fabricated by Reactive Spray Deposition Technology. J. Electrochem. Soc. 169, 054536 (2022). 8. Mirshekari, G. et al. High-performance and cost-effective membrane electrode assemblies for advanced proton exchange membrane water electrolyzers: Long-term durability assessment. Int. J. Hydrogen Energy 46, 1526–1539 (2021). 9. Yu, H. et al. Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Appl. Catal. B Environ. 239, 133–146 (2018).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虞智闳发布了新的文献求助10
刚刚
烜66发布了新的文献求助10
刚刚
2秒前
SciGPT应助汪汪队立大功采纳,获得10
4秒前
科研通AI6应助磊磊采纳,获得10
4秒前
科研小秦发布了新的文献求助10
5秒前
5秒前
米粒完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
呜哈哈完成签到 ,获得积分10
7秒前
mashibeo应助zimo采纳,获得10
7秒前
7秒前
爆米花应助liliping采纳,获得10
7秒前
称心曼安应助醉生梦死采纳,获得10
8秒前
8秒前
10秒前
无花果应助刘kk采纳,获得10
10秒前
四壁雪发布了新的文献求助10
11秒前
11秒前
小曹发布了新的文献求助10
12秒前
漂亮凌旋完成签到,获得积分10
13秒前
哈哈完成签到 ,获得积分10
14秒前
Nightfall发布了新的文献求助10
14秒前
pengyuLiu发布了新的文献求助30
14秒前
14秒前
14秒前
Ava应助火火采纳,获得20
15秒前
15秒前
15秒前
16秒前
Akim应助动人的汉堡采纳,获得10
16秒前
cjp发布了新的文献求助30
16秒前
JCY123发布了新的文献求助10
17秒前
18秒前
2213sss发布了新的文献求助10
20秒前
Bellona完成签到,获得积分10
20秒前
jia发布了新的文献求助10
20秒前
NoMi发布了新的文献求助10
20秒前
Owen应助田富贵采纳,获得10
21秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443159
求助须知:如何正确求助?哪些是违规求助? 4553068
关于积分的说明 14240935
捐赠科研通 4474702
什么是DOI,文献DOI怎么找? 2452098
邀请新用户注册赠送积分活动 1443060
关于科研通互助平台的介绍 1418705