Advanced Porous Transport Layers for PEM Water Electrolyzers: Impact of the Interfacial and Bulk Properties of the PTLs on the Electrolyzers Performance

质子交换膜燃料电池 材料科学 催化作用 可再生能源 化学工程 阳极 制氢 接触电阻 多孔性 图层(电子) 纳米技术 复合材料 电极 化学 工程类 物理化学 电气工程 生物化学
作者
Zhiqiao Zeng,Stoyan Bliznakov,Leonard J. Bonville,Radenka Marić
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (36): 2056-2056 被引量:2
标识
DOI:10.1149/ma2023-01362056mtgabs
摘要

Proton exchange membrane water electrolyzers (PEMWEs) are widely seen as a crucial technology for integration with renewable energy sources to convert the generated electricity to green hydrogen, which is a clean and sustainable energy carrier. 1 However, their high capital cost and operational expenditures increase the production cost of green H 2 . 2 To make the technology economically competitive and boost its market penetration, DOE implemented targets of $2 kg -1 by 2025 and $1 kg -1 hydrogen by 2030. 3 The interfacial and bulk properties of the porous transport layer (PTL) are vital to the PEMWEs performance. 4–6 The optimal bulk properties of PTL improve cell performance mainly by improving the mass transport, while the reduced interfacial contact resistance between the anode catalyst layer and PTL, also enhances the catalyst utilization, allowing for a reduction of the precious metal loading. Further reduction of the interfacial contact resistance between the PTL and the catalyst layer is of crucial importance for increasing the efficiency of the PEMWEs, as well as for decreasing the production cost of green H 2 . In this study, an innovative reactive spray deposition technology (RSDT) is used to fabricate catalyst-coated membranes (CCMs) and catalyst-coated electrodes (CCEs) with ultra-low PGM loading (0.2 - 0.3 mg PGM cm -2 ) in both catalyst layers. The RSDT is a flame-based method that combines the synthesis and deposition of the catalyst in a single step, which results in a significant reduction of the MEA fabrication time and cost, respectively. 7–9 A set of commercially available Ti PTLs with various thicknesses and porosities have been used to assemble single cells as fabricated MEAs, and their performance has been assessed and compared to the state-of-the-art MEAs for PEMWEs. In addition, the impact of the thickness and porosity of the PTL, as well as the interfacial contact resistance between the PTL and catalyst layer for both single-cell PEMWE configurations (CCMs and CCEs) have been investigated. The performance loss in each cell configuration has been identified and discussed in detail. Furthermore, a standard accelerated stress test (AST) protocol has been applied to assess the durability of the RSDT-fabricated MEAs, with one order of magnitude lower PGM loading in their catalyst layers in comparison to the best reported in the literature MEAs for PEMWEs. Reference 1. Carmo, M. et al. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). 2. Babic, U. et al. Critical Review — Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development Review — Identifying Critical Gaps for Polymer Electrolyte Water. (2017) doi:10.1149/2.1441704jes. 3. https://www.energy.gov/eere/fuelcells/hydrogen-shot 4. Peng, X. et al. Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra-Low Iridium Loadings. Adv. Sci. 8, 1–9 (2021). 5. Bühler, M. et al. Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers. J. Mater. Chem. A 7, 26984–26995 (2019). 6. Kulkarni, D. et al. Elucidating effects of catalyst loadings and porous transport layer morphologies on the operation of proton exchange membrane water electrolyzers. Appl. Catal. B Environ. 308, 121213 (2022). 7. Zeng, Z. et al. Degradation Mechanisms in Advanced MEAs for PEM Water Electrolyzers Fabricated by Reactive Spray Deposition Technology. J. Electrochem. Soc. 169, 054536 (2022). 8. Mirshekari, G. et al. High-performance and cost-effective membrane electrode assemblies for advanced proton exchange membrane water electrolyzers: Long-term durability assessment. Int. J. Hydrogen Energy 46, 1526–1539 (2021). 9. Yu, H. et al. Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Appl. Catal. B Environ. 239, 133–146 (2018).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RenHP发布了新的文献求助10
刚刚
jingyuemingqiu完成签到 ,获得积分10
刚刚
洋芋完成签到,获得积分10
刚刚
2以李发布了新的文献求助10
1秒前
有魅力的惜蕊完成签到,获得积分10
1秒前
1秒前
2秒前
领导范儿应助石冠山采纳,获得10
2秒前
Imp完成签到,获得积分10
3秒前
失眠的火车完成签到,获得积分10
3秒前
ch发布了新的文献求助10
3秒前
酷波er应助linlin采纳,获得10
3秒前
小郭大夫发布了新的文献求助10
3秒前
4秒前
小蘑菇应助LiliHu采纳,获得10
5秒前
5秒前
Lucas应助7lanxiong采纳,获得10
5秒前
直率毛豆发布了新的文献求助10
5秒前
你香发布了新的文献求助10
6秒前
gmj完成签到,获得积分10
7秒前
朴素的鸡翅完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
共享精神应助LmaPN7采纳,获得30
9秒前
linlin完成签到,获得积分20
9秒前
机智的书雪完成签到 ,获得积分10
9秒前
9秒前
9秒前
科研通AI2S应助调皮帽子采纳,获得10
10秒前
10秒前
天天完成签到,获得积分10
10秒前
RenHP完成签到,获得积分10
11秒前
11秒前
11秒前
哭泣的涵柳完成签到,获得积分10
11秒前
大渣饼完成签到 ,获得积分10
11秒前
HH完成签到,获得积分10
11秒前
三岁完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
dhf完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767