Deep learning algorithm for real-time automatic crack detection, segmentation, qualification

计算机科学 分割 棱锥(几何) 交叉口(航空) 联营 人工智能 算法 任务(项目管理) 卷积(计算机科学) 过程(计算) 模式识别(心理学) 人工神经网络 数学 几何学 管理 工程类 经济 航空航天工程 操作系统
作者
Gang Xu,Qingrui Yue,Xiaogang Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107085-107085 被引量:13
标识
DOI:10.1016/j.engappai.2023.107085
摘要

Cracking is one of the typical damages in concrete structures, and it is crucial to detect and quantify cracks in a timely and efficient manner. However, current research primarily focuses on either single-task recognition or dual-task recognition based on multi-step sequential approaches. Less attention has been devoted to the multi-task integration of cracks. To address the challenges of inefficient and multi-step detection in traditional concrete crack detection methods, a novel deep learning-based model, called YOLOv5-IDS, is proposed based on You Only Look Once network v5 (version 6.2) with the combination of bilateral segmentation network while introducing a dilated convolution, pyramid pooling module, and attention refinement module. Moreover, crack parameter measurement algorithms based on the micro-element method are proposed to improve accuracy and efficiency. The method proposed in this study can not only detect and segment cracks with high accuracy and efficiency, but also quickly measure crack parameters, thus developing a complete method for the process from real-time crack detection and segmentation to crack parameter measurement. The experimental results for the YOLOv5-IDS model reveal the following performance metrics. For crack detection, the mean average precision with an intersection of union threshold of 0.5 ([email protected]) is 84.33%, and the frames per second (FPS) is 159 f/s. For crack segmentation, the mean intersection over union (mIoU) is 94.78%, and the FPS is 8 f/s, respectively. Compared to existing methods, the proposed approach exhibits improvements in both accuracy and efficiency. Moreover, the calculation of crack parameters proves to be both precise and rapid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆小菜完成签到,获得积分10
1秒前
miku1发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
zg完成签到,获得积分10
1秒前
Jasper应助哈哈采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
逢考必过完成签到,获得积分10
2秒前
文献求助人完成签到,获得积分10
2秒前
科研通AI2S应助zm采纳,获得10
3秒前
游舒平发布了新的文献求助30
3秒前
hoijuon应助harden9159采纳,获得10
4秒前
英勇的竺完成签到,获得积分10
5秒前
5秒前
Jenny发布了新的文献求助10
5秒前
朴素的啤酒完成签到,获得积分10
6秒前
miku1完成签到,获得积分10
7秒前
万幸鹿发布了新的文献求助30
7秒前
gbw123发布了新的文献求助10
7秒前
8秒前
ycd发布了新的文献求助10
8秒前
LEMONS应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
10秒前
yi完成签到,获得积分10
10秒前
Jasper应助科研通管家采纳,获得50
10秒前
LEMONS应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
s0x0y0发布了新的文献求助10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
张菁完成签到,获得积分10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149