Deep learning algorithm for real-time automatic crack detection, segmentation, qualification

计算机科学 分割 棱锥(几何) 交叉口(航空) 联营 人工智能 算法 任务(项目管理) 卷积(计算机科学) 过程(计算) 模式识别(心理学) 人工神经网络 数学 几何学 操作系统 工程类 航空航天工程 经济 管理
作者
Gang Xu,Qingrui Yue,Xiaogang Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107085-107085 被引量:13
标识
DOI:10.1016/j.engappai.2023.107085
摘要

Cracking is one of the typical damages in concrete structures, and it is crucial to detect and quantify cracks in a timely and efficient manner. However, current research primarily focuses on either single-task recognition or dual-task recognition based on multi-step sequential approaches. Less attention has been devoted to the multi-task integration of cracks. To address the challenges of inefficient and multi-step detection in traditional concrete crack detection methods, a novel deep learning-based model, called YOLOv5-IDS, is proposed based on You Only Look Once network v5 (version 6.2) with the combination of bilateral segmentation network while introducing a dilated convolution, pyramid pooling module, and attention refinement module. Moreover, crack parameter measurement algorithms based on the micro-element method are proposed to improve accuracy and efficiency. The method proposed in this study can not only detect and segment cracks with high accuracy and efficiency, but also quickly measure crack parameters, thus developing a complete method for the process from real-time crack detection and segmentation to crack parameter measurement. The experimental results for the YOLOv5-IDS model reveal the following performance metrics. For crack detection, the mean average precision with an intersection of union threshold of 0.5 ([email protected]) is 84.33%, and the frames per second (FPS) is 159 f/s. For crack segmentation, the mean intersection over union (mIoU) is 94.78%, and the FPS is 8 f/s, respectively. Compared to existing methods, the proposed approach exhibits improvements in both accuracy and efficiency. Moreover, the calculation of crack parameters proves to be both precise and rapid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Glufo发布了新的文献求助10
刚刚
zz完成签到 ,获得积分10
1秒前
zhuzhu完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
传奇3应助小小菜鸟芬采纳,获得10
5秒前
所所应助cafu采纳,获得10
6秒前
able应助Fun采纳,获得30
6秒前
Glufo完成签到,获得积分10
6秒前
7秒前
我是老大应助加菲丰丰采纳,获得10
8秒前
8秒前
8秒前
sqxl发布了新的文献求助10
8秒前
贝拉发布了新的文献求助10
9秒前
zkl发布了新的文献求助10
10秒前
10秒前
10秒前
FashionBoy应助小呆鹿采纳,获得10
10秒前
12秒前
林俊超发布了新的文献求助10
12秒前
秋暝寒衣完成签到,获得积分10
12秒前
海绵宝宝的做饭铲完成签到,获得积分10
12秒前
13秒前
13秒前
瓜瓜发布了新的文献求助10
13秒前
dhd发布了新的文献求助10
14秒前
15秒前
16秒前
研友_VZG7GZ应助Sci_chen采纳,获得10
16秒前
Ava应助瘦瘦的草丛采纳,获得10
17秒前
李爱国应助skx采纳,获得10
17秒前
万嘉俊发布了新的文献求助10
17秒前
18秒前
Dryad完成签到,获得积分10
18秒前
zkl完成签到,获得积分10
18秒前
20秒前
20秒前
Lucas应助魁梧的涫采纳,获得10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898