Deep learning algorithm for real-time automatic crack detection, segmentation, qualification

计算机科学 分割 棱锥(几何) 交叉口(航空) 联营 人工智能 算法 任务(项目管理) 卷积(计算机科学) 过程(计算) 模式识别(心理学) 人工神经网络 数学 几何学 管理 工程类 经济 航空航天工程 操作系统
作者
Gang Xu,Qingrui Yue,Xiaogang Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107085-107085 被引量:13
标识
DOI:10.1016/j.engappai.2023.107085
摘要

Cracking is one of the typical damages in concrete structures, and it is crucial to detect and quantify cracks in a timely and efficient manner. However, current research primarily focuses on either single-task recognition or dual-task recognition based on multi-step sequential approaches. Less attention has been devoted to the multi-task integration of cracks. To address the challenges of inefficient and multi-step detection in traditional concrete crack detection methods, a novel deep learning-based model, called YOLOv5-IDS, is proposed based on You Only Look Once network v5 (version 6.2) with the combination of bilateral segmentation network while introducing a dilated convolution, pyramid pooling module, and attention refinement module. Moreover, crack parameter measurement algorithms based on the micro-element method are proposed to improve accuracy and efficiency. The method proposed in this study can not only detect and segment cracks with high accuracy and efficiency, but also quickly measure crack parameters, thus developing a complete method for the process from real-time crack detection and segmentation to crack parameter measurement. The experimental results for the YOLOv5-IDS model reveal the following performance metrics. For crack detection, the mean average precision with an intersection of union threshold of 0.5 ([email protected]) is 84.33%, and the frames per second (FPS) is 159 f/s. For crack segmentation, the mean intersection over union (mIoU) is 94.78%, and the FPS is 8 f/s, respectively. Compared to existing methods, the proposed approach exhibits improvements in both accuracy and efficiency. Moreover, the calculation of crack parameters proves to be both precise and rapid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
108实验室完成签到,获得积分20
刚刚
刚刚
清爽伯云完成签到,获得积分10
1秒前
Lucas应助无糖零脂采纳,获得10
1秒前
1秒前
图灵桑完成签到,获得积分10
1秒前
啦啦啦德玛西亚完成签到,获得积分10
2秒前
CodeCraft应助Ava采纳,获得10
2秒前
爱笑的之槐完成签到 ,获得积分10
3秒前
ESTHERDY完成签到 ,获得积分10
3秒前
yyyyyge发布了新的文献求助20
3秒前
不想干活应助美好斓采纳,获得10
3秒前
未晚完成签到,获得积分10
4秒前
邱梓铭完成签到,获得积分10
4秒前
5秒前
DD完成签到,获得积分10
5秒前
zmmm完成签到,获得积分10
6秒前
6秒前
陌上尘开发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
星辰大海应助warburg采纳,获得10
7秒前
LAYWL完成签到,获得积分10
7秒前
九月初五完成签到,获得积分10
8秒前
爆米花应助Anatee采纳,获得10
8秒前
8秒前
DXF关闭了DXF文献求助
9秒前
哇哈哈发布了新的文献求助10
9秒前
少冰丶七分糖完成签到,获得积分10
9秒前
归去来兮发布了新的文献求助10
10秒前
甜美平文发布了新的文献求助10
10秒前
hi小豆发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
赤恩完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743