An untargeted serum and urine lipidomics research based on UPLC–MS revealed the lipid alterations on adjuvant‐induced arthritis rats

脂类学 脂质代谢 脂质体 化学 代谢组学 新陈代谢 尿 脂肪酸代谢 色谱法 生物化学
作者
Wei Shi,Yue Han
出处
期刊:Biomedical Chromatography [Wiley]
卷期号:37 (11) 被引量:2
标识
DOI:10.1002/bmc.5736
摘要

Rheumatoid arthritis (RA) is a systemic autoimmune disease dominated by chronic inflammatory lesions of peripheral synovial joints. Growing evidence suggests that abnormal lipid metabolism levels contribute to the progression of RA. Although several metabolomics studies have shown abnormality in the RA lipidome, the relationship between the overall lipid metabolites and RA has not been systematically evaluated. In this study, an untargeted lipidomics method based on ultra performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the serum and urine lipidomes of adjuvant-induced arthritis rats to study the characteristics of lipid metabolism changes in the rats and search lipid markers for diagnosing RA. By combining with orthogonal partial least squares discriminant analysis, a total of 52 potential lipid markers were identified, mainly involved in sphingolipid metabolism, glycerophospholipid metabolism, sterol lipid metabolism, glycerolipid metabolism and fatty acid metabolism, which provided crucial insight into lipid metabolism disturbances in RA. Further receiver operating characteristic analysis revealed that the areas under the curve of PC(22:4/16:0), PI(18:1/16:0) and LacCer(d18:1/12:0) from serum and 25-hydroxycholesterol from urine were 0.94, 1.00, 1.00 and 1.00, respectively, indicating the high predictive ability of this method for RA. In this study, our results indicated that a combination of serum and urine analysis can provide a more comprehensive and reliable assessment of RA, and a UPLC-MS-based lipidomics strategy is a powerful tool to search for potential lipid markers associated with RA and explore the pathogenesis of RA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的碧发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
酷波er应助墨蓝色采纳,获得10
2秒前
SkyTsai完成签到,获得积分10
2秒前
振耳欲聋的沉默完成签到,获得积分10
3秒前
Hhhhh发布了新的文献求助10
3秒前
3秒前
天岚完成签到,获得积分20
3秒前
mk发布了新的文献求助10
3秒前
王清发布了新的文献求助20
4秒前
lan123456发布了新的文献求助10
4秒前
墨墨叻发布了新的文献求助10
4秒前
伶俐的血茗完成签到 ,获得积分10
4秒前
bkagyin应助明枫采纳,获得10
5秒前
5秒前
潇洒的蓝完成签到,获得积分10
5秒前
5秒前
窝瓜顶呱呱完成签到,获得积分10
5秒前
6秒前
TeaFace发布了新的文献求助10
7秒前
aniu完成签到,获得积分10
8秒前
8秒前
eva完成签到,获得积分10
8秒前
芬达完成签到 ,获得积分10
9秒前
Orange应助LeungYM采纳,获得30
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
岁月如酒完成签到,获得积分10
10秒前
来自3602完成签到,获得积分10
11秒前
wwc发布了新的文献求助10
11秒前
Q1n发布了新的文献求助10
11秒前
XYS完成签到,获得积分10
12秒前
美好南晴发布了新的文献求助10
12秒前
FIF发布了新的文献求助10
12秒前
爱学习的小李完成签到 ,获得积分10
13秒前
孤独寻云发布了新的文献求助50
14秒前
15秒前
昏睡的蟠桃应助jmdz采纳,获得30
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792