Revealing the origin of high-thermal-stability of single-crystal Ni-rich cathodes toward higher-safety batteries

材料科学 热失控 阴极 热稳定性 氧气 锂(药物) 微晶 扩散 电池(电) 相(物质) 化学工程 热的 冶金 热力学 物理化学 化学 医学 功率(物理) 物理 有机化学 工程类 内分泌学
作者
Yijun Song,Yongpeng Cui,Bingyu Li,Lin Geng,Jitong Yan,Dingding Zhu,Pengfei Zhou,Jin Zhou,Zifeng Yan,Qingzhong Xue,Yongfu Tang,Wei Xing
出处
期刊:Nano Energy [Elsevier]
卷期号:116: 108846-108846 被引量:59
标识
DOI:10.1016/j.nanoen.2023.108846
摘要

The poor thermal stability of Ni-rich cathode materials, resulting in thermal runaway of the battery, is a major safety threat to the development of lithium-ion batteries. However, the thermal degradation mechanism that determines thermal stability, especially for the promising single-crystal (SC) Ni-rich cathode material, has not been elucidated. More importantly, this is indeed a fundamental issue. Herein, via a series of in-situ/ex-situ probing technologies, the thermal degradation of SC Ni-rich material is elaborately diagnosed from surface to bulk phase and compared with polycrystalline (PC) Ni-rich material. A comprehensive oxygen release kinetic model including oxygen diffusion distance, mechanical stress and temperature is presented. This model reveals that the SC Ni-rich material exhibits a stable depth-dependent gradient oxygen release kinetics, while the PC Ni-rich material exhibits an accelerated oxygen release kinetics by grain boundaries, which reveals the origin of the high-thermal-stability of SC Ni-rich cathodes. This work highlights the importance of suppressing oxygen release kinetics (e.g., increase oxygen diffusion distance, increase mechanical stress) to improve thermal stability, facilitating the development of safer lithium-ion batteries based on Ni-rich cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小恐龙发布了新的文献求助10
1秒前
VDC应助大灯泡采纳,获得30
1秒前
1秒前
Twonej应助Wenjian7761采纳,获得30
2秒前
浮游应助123采纳,获得10
4秒前
一支卓发布了新的文献求助10
4秒前
华仔应助yun采纳,获得10
4秒前
cyskdsn完成签到 ,获得积分10
5秒前
勤H完成签到,获得积分10
7秒前
天涯明月刀完成签到,获得积分10
7秒前
星星完成签到,获得积分10
9秒前
9秒前
KONG完成签到,获得积分10
10秒前
11秒前
静静在学呢完成签到,获得积分10
12秒前
兆兆发布了新的文献求助10
12秒前
13秒前
浮游应助一支卓采纳,获得10
13秒前
受伤听露完成签到 ,获得积分10
13秒前
慕青应助怕黑剑封采纳,获得10
14秒前
14秒前
德玛西亚发布了新的文献求助10
14秒前
HHW发布了新的文献求助10
14秒前
奋斗思烟完成签到 ,获得积分10
15秒前
自由的微风完成签到,获得积分10
17秒前
linkman发布了新的文献求助200
17秒前
木子完成签到,获得积分10
18秒前
小房子完成签到,获得积分10
20秒前
Nolan完成签到,获得积分10
20秒前
贪玩板栗发布了新的文献求助10
20秒前
22秒前
23秒前
甜甜的平蓝完成签到,获得积分10
24秒前
25秒前
25秒前
潇洒飞丹完成签到,获得积分10
26秒前
28秒前
29秒前
29秒前
Baywreath完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714