Prediction of High-Risk Donors for Kidney Discard and Nonrecovery Using Structured Donor Characteristics and Unstructured Donor Narratives

医学 队列 接收机工作特性 回顾性队列研究 单中心 器官共享联合网络 肾移植 队列研究 移植 内科学 肝移植
作者
Junichiro Sageshima,Péter Than,Naeem Goussous,Neal Mineyev,Richard V. Perez
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 60-60 被引量:5
标识
DOI:10.1001/jamasurg.2023.4679
摘要

Importance Despite the unmet need, many deceased-donor kidneys are discarded or not recovered. Inefficient allocation and prolonged ischemia time are contributing factors, and early detection of high-risk donors may reduce organ loss. Objective To evaluate the feasibility of machine learning (ML) and natural language processing (NLP) classification of donors with kidneys that are used vs not used for organ transplant. Design, Setting, and Participants This retrospective cohort study used donor information (structured donor characteristics and unstructured donor narratives) from the United Network for Organ Sharing (UNOS). All donor offers to a single transplant center between January 2015 and December 2020 were used to train and validate ML models to predict donors who had at least 1 kidney transplanted (at our center or another center). The donor data from 2021 were used to test each model. Exposures Donor information was provided by UNOS to the transplant centers with potential transplant candidates. Each center evaluated the donor and decided within an allotted time whether to accept the kidney for organ transplant. Main Outcomes and Measures Outcome metrics of the test cohort included area under the receiver operating characteristic curve (AUROC), F 1 score, accuracy, precision, and recall of each ML classifier. Feature importance and Shapley additive explanation (SHAP) summaries were assessed for model explainability. Results The training/validation cohort included 9555 donors (median [IQR] age, 50 [36-58] years; 5571 male [58.3%]), and the test cohort included 2481 donors (median [IQR] age, 52 [40-59] years; 1496 male [60.3%]). Only 20% to 30% of potential donors had at least 1 kidney transplanted. The ML model with a single variable (Kidney Donor Profile Index) showed an AUROC of 0.69, F 1 score of 0.42, and accuracy of 0.64. Multivariable ML models based on basic a priori structured donor data showed similar metrics (logistic regression: AUROC = 0.70; F 1 score = 0.42; accuracy = 0.62; random forest classifier: AUROC = 0.69; F 1 score = 0.42; accuracy = 0.64). The classic NLP model (bag-of-words model) showed its best metrics (AUROC = 0.60; F 1 score = 0.35; accuracy = 0.59) by the logistic regression classifier. The advanced Bidirectional Encoder Representations From Transformers model showed comparable metrics (AUROC = 0.62; F 1 score = 0.39; accuracy = 0.69) only after appending basic donor information. Feature importance and SHAP detected the variables (and words) that affected the models most. Conclusions and Relevance Results of this cohort study suggest that models using ML can be applied to predict donors with high-risk kidneys not used for organ transplant, but the models still need further elaboration. The use of unstructured data is likely to expand the possibilities; further exploration of new approaches will be necessary to develop models with better predictive metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjn发布了新的文献求助10
刚刚
orixero应助匆匆而过采纳,获得10
刚刚
刚刚
缚大哥发布了新的文献求助10
1秒前
小梁今天也要努力呀完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
aging00发布了新的文献求助10
2秒前
徐zhipei完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
lin发布了新的文献求助10
2秒前
开朗的又亦完成签到,获得积分10
2秒前
天天快乐应助小葵采纳,获得10
3秒前
4秒前
山水完成签到,获得积分10
4秒前
Jasper应助nanjiren采纳,获得10
4秒前
霸王龙完成签到,获得积分10
4秒前
yszm发布了新的文献求助10
4秒前
AoAoo完成签到,获得积分10
4秒前
xiaoziyi666发布了新的文献求助10
4秒前
研友_5ZlN6L完成签到,获得积分10
5秒前
5秒前
海绵梅发布了新的文献求助10
5秒前
吕奎完成签到,获得积分10
5秒前
yayaya发布了新的文献求助10
6秒前
如意元霜完成签到 ,获得积分10
6秒前
6秒前
live完成签到 ,获得积分10
6秒前
6秒前
领导范儿应助子铭采纳,获得10
6秒前
7秒前
包包琪完成签到 ,获得积分10
8秒前
8秒前
jjyy举报量子星尘求助涉嫌违规
8秒前
可宝想当富婆完成签到 ,获得积分10
8秒前
8秒前
大模型应助赵白采纳,获得10
8秒前
科研通AI2S应助aging00采纳,获得10
8秒前
缚大哥完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890960
求助须知:如何正确求助?哪些是违规求助? 4174608
关于积分的说明 12956124
捐赠科研通 3936644
什么是DOI,文献DOI怎么找? 2159757
邀请新用户注册赠送积分活动 1178149
关于科研通互助平台的介绍 1083632