Prediction of High-Risk Donors for Kidney Discard and Nonrecovery Using Structured Donor Characteristics and Unstructured Donor Narratives

医学 队列 接收机工作特性 回顾性队列研究 单中心 器官共享联合网络 肾移植 队列研究 移植 内科学 肝移植
作者
Junichiro Sageshima,Péter Than,Naeem Goussous,Neal Mineyev,Richard V. Perez
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 60-60 被引量:5
标识
DOI:10.1001/jamasurg.2023.4679
摘要

Importance Despite the unmet need, many deceased-donor kidneys are discarded or not recovered. Inefficient allocation and prolonged ischemia time are contributing factors, and early detection of high-risk donors may reduce organ loss. Objective To evaluate the feasibility of machine learning (ML) and natural language processing (NLP) classification of donors with kidneys that are used vs not used for organ transplant. Design, Setting, and Participants This retrospective cohort study used donor information (structured donor characteristics and unstructured donor narratives) from the United Network for Organ Sharing (UNOS). All donor offers to a single transplant center between January 2015 and December 2020 were used to train and validate ML models to predict donors who had at least 1 kidney transplanted (at our center or another center). The donor data from 2021 were used to test each model. Exposures Donor information was provided by UNOS to the transplant centers with potential transplant candidates. Each center evaluated the donor and decided within an allotted time whether to accept the kidney for organ transplant. Main Outcomes and Measures Outcome metrics of the test cohort included area under the receiver operating characteristic curve (AUROC), F 1 score, accuracy, precision, and recall of each ML classifier. Feature importance and Shapley additive explanation (SHAP) summaries were assessed for model explainability. Results The training/validation cohort included 9555 donors (median [IQR] age, 50 [36-58] years; 5571 male [58.3%]), and the test cohort included 2481 donors (median [IQR] age, 52 [40-59] years; 1496 male [60.3%]). Only 20% to 30% of potential donors had at least 1 kidney transplanted. The ML model with a single variable (Kidney Donor Profile Index) showed an AUROC of 0.69, F 1 score of 0.42, and accuracy of 0.64. Multivariable ML models based on basic a priori structured donor data showed similar metrics (logistic regression: AUROC = 0.70; F 1 score = 0.42; accuracy = 0.62; random forest classifier: AUROC = 0.69; F 1 score = 0.42; accuracy = 0.64). The classic NLP model (bag-of-words model) showed its best metrics (AUROC = 0.60; F 1 score = 0.35; accuracy = 0.59) by the logistic regression classifier. The advanced Bidirectional Encoder Representations From Transformers model showed comparable metrics (AUROC = 0.62; F 1 score = 0.39; accuracy = 0.69) only after appending basic donor information. Feature importance and SHAP detected the variables (and words) that affected the models most. Conclusions and Relevance Results of this cohort study suggest that models using ML can be applied to predict donors with high-risk kidneys not used for organ transplant, but the models still need further elaboration. The use of unstructured data is likely to expand the possibilities; further exploration of new approaches will be necessary to develop models with better predictive metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
科研通AI2S应助辛勤的无血采纳,获得10
2秒前
大模型应助rua采纳,获得10
2秒前
3秒前
务实大神发布了新的文献求助10
3秒前
小花同学发布了新的文献求助10
3秒前
3秒前
wang完成签到,获得积分10
4秒前
4秒前
xinxinqi完成签到 ,获得积分10
4秒前
lkd发布了新的文献求助10
5秒前
木木完成签到,获得积分10
6秒前
6秒前
fengyiweixiang完成签到,获得积分20
7秒前
魔幻蓉完成签到,获得积分20
7秒前
HHHhhhh发布了新的文献求助10
7秒前
科研岗完成签到,获得积分10
7秒前
时尚的莛完成签到,获得积分10
8秒前
8秒前
秋風发布了新的文献求助10
8秒前
YZJing完成签到,获得积分10
8秒前
Amosummer完成签到,获得积分10
8秒前
pingyy发布了新的文献求助10
9秒前
月之暗面发布了新的文献求助10
9秒前
草莓熊1215完成签到 ,获得积分10
9秒前
嗯嗯发布了新的文献求助10
9秒前
子陵完成签到 ,获得积分10
10秒前
Stephhen完成签到,获得积分10
10秒前
传奇3应助布曲采纳,获得10
10秒前
10秒前
10秒前
11秒前
红红发布了新的文献求助50
11秒前
优美的tong完成签到 ,获得积分10
12秒前
汌舟完成签到,获得积分10
12秒前
12秒前
CipherSage应助时尚的莛采纳,获得10
12秒前
12秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072929
求助须知:如何正确求助?哪些是违规求助? 2726563
关于积分的说明 7495633
捐赠科研通 2374613
什么是DOI,文献DOI怎么找? 1259073
科研通“疑难数据库(出版商)”最低求助积分说明 610527
版权声明 597020