Prediction of High-Risk Donors for Kidney Discard and Nonrecovery Using Structured Donor Characteristics and Unstructured Donor Narratives

医学 队列 接收机工作特性 回顾性队列研究 单中心 器官共享联合网络 肾移植 队列研究 移植 内科学 肝移植
作者
Junichiro Sageshima,Péter Than,Naeem Goussous,Neal Mineyev,Richard V. Perez
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 60-60 被引量:5
标识
DOI:10.1001/jamasurg.2023.4679
摘要

Importance Despite the unmet need, many deceased-donor kidneys are discarded or not recovered. Inefficient allocation and prolonged ischemia time are contributing factors, and early detection of high-risk donors may reduce organ loss. Objective To evaluate the feasibility of machine learning (ML) and natural language processing (NLP) classification of donors with kidneys that are used vs not used for organ transplant. Design, Setting, and Participants This retrospective cohort study used donor information (structured donor characteristics and unstructured donor narratives) from the United Network for Organ Sharing (UNOS). All donor offers to a single transplant center between January 2015 and December 2020 were used to train and validate ML models to predict donors who had at least 1 kidney transplanted (at our center or another center). The donor data from 2021 were used to test each model. Exposures Donor information was provided by UNOS to the transplant centers with potential transplant candidates. Each center evaluated the donor and decided within an allotted time whether to accept the kidney for organ transplant. Main Outcomes and Measures Outcome metrics of the test cohort included area under the receiver operating characteristic curve (AUROC), F 1 score, accuracy, precision, and recall of each ML classifier. Feature importance and Shapley additive explanation (SHAP) summaries were assessed for model explainability. Results The training/validation cohort included 9555 donors (median [IQR] age, 50 [36-58] years; 5571 male [58.3%]), and the test cohort included 2481 donors (median [IQR] age, 52 [40-59] years; 1496 male [60.3%]). Only 20% to 30% of potential donors had at least 1 kidney transplanted. The ML model with a single variable (Kidney Donor Profile Index) showed an AUROC of 0.69, F 1 score of 0.42, and accuracy of 0.64. Multivariable ML models based on basic a priori structured donor data showed similar metrics (logistic regression: AUROC = 0.70; F 1 score = 0.42; accuracy = 0.62; random forest classifier: AUROC = 0.69; F 1 score = 0.42; accuracy = 0.64). The classic NLP model (bag-of-words model) showed its best metrics (AUROC = 0.60; F 1 score = 0.35; accuracy = 0.59) by the logistic regression classifier. The advanced Bidirectional Encoder Representations From Transformers model showed comparable metrics (AUROC = 0.62; F 1 score = 0.39; accuracy = 0.69) only after appending basic donor information. Feature importance and SHAP detected the variables (and words) that affected the models most. Conclusions and Relevance Results of this cohort study suggest that models using ML can be applied to predict donors with high-risk kidneys not used for organ transplant, but the models still need further elaboration. The use of unstructured data is likely to expand the possibilities; further exploration of new approaches will be necessary to develop models with better predictive metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白鸽完成签到,获得积分10
刚刚
机灵纸鹤完成签到 ,获得积分10
刚刚
lake完成签到,获得积分10
刚刚
Hello应助受伤的安雁采纳,获得30
刚刚
Evan123完成签到,获得积分10
1秒前
闫什应助Flz采纳,获得10
1秒前
1秒前
xiaorui完成签到,获得积分10
1秒前
尊敬的寄松完成签到 ,获得积分10
3秒前
4秒前
云深不知处完成签到,获得积分10
4秒前
老迟到的小松鼠完成签到,获得积分10
5秒前
勤恳镜子完成签到,获得积分10
6秒前
开心的若烟完成签到,获得积分10
7秒前
爱上多hi完成签到,获得积分10
7秒前
ll发布了新的文献求助10
10秒前
10秒前
笨笨梦寒关注了科研通微信公众号
10秒前
MM完成签到,获得积分10
11秒前
煲煲煲仔饭完成签到 ,获得积分10
11秒前
煲煲煲仔饭完成签到 ,获得积分10
11秒前
火羊宝完成签到 ,获得积分10
11秒前
455完成签到,获得积分10
13秒前
cis2014完成签到,获得积分10
13秒前
嘻嘻完成签到,获得积分10
14秒前
athena完成签到,获得积分10
14秒前
十七完成签到 ,获得积分10
15秒前
Zz完成签到,获得积分10
15秒前
清淮完成签到 ,获得积分10
15秒前
小新小新发布了新的文献求助10
16秒前
amault完成签到,获得积分10
17秒前
马小燕完成签到,获得积分10
17秒前
潇洒一曲完成签到,获得积分10
18秒前
笛九完成签到 ,获得积分10
19秒前
机智咖啡豆完成签到 ,获得积分10
21秒前
桐桐应助害羞的天真采纳,获得10
21秒前
浮游应助哭泣的皮皮虾采纳,获得10
21秒前
英姑应助风清扬采纳,获得10
22秒前
hhhhxxxx完成签到,获得积分10
23秒前
jjj完成签到,获得积分10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695