Prediction of High-Risk Donors for Kidney Discard and Nonrecovery Using Structured Donor Characteristics and Unstructured Donor Narratives

医学 队列 接收机工作特性 回顾性队列研究 单中心 器官共享联合网络 肾移植 队列研究 移植 内科学 肝移植
作者
Junichiro Sageshima,Péter Than,Naeem Goussous,Neal Mineyev,Richard V. Perez
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 60-60 被引量:5
标识
DOI:10.1001/jamasurg.2023.4679
摘要

Importance Despite the unmet need, many deceased-donor kidneys are discarded or not recovered. Inefficient allocation and prolonged ischemia time are contributing factors, and early detection of high-risk donors may reduce organ loss. Objective To evaluate the feasibility of machine learning (ML) and natural language processing (NLP) classification of donors with kidneys that are used vs not used for organ transplant. Design, Setting, and Participants This retrospective cohort study used donor information (structured donor characteristics and unstructured donor narratives) from the United Network for Organ Sharing (UNOS). All donor offers to a single transplant center between January 2015 and December 2020 were used to train and validate ML models to predict donors who had at least 1 kidney transplanted (at our center or another center). The donor data from 2021 were used to test each model. Exposures Donor information was provided by UNOS to the transplant centers with potential transplant candidates. Each center evaluated the donor and decided within an allotted time whether to accept the kidney for organ transplant. Main Outcomes and Measures Outcome metrics of the test cohort included area under the receiver operating characteristic curve (AUROC), F 1 score, accuracy, precision, and recall of each ML classifier. Feature importance and Shapley additive explanation (SHAP) summaries were assessed for model explainability. Results The training/validation cohort included 9555 donors (median [IQR] age, 50 [36-58] years; 5571 male [58.3%]), and the test cohort included 2481 donors (median [IQR] age, 52 [40-59] years; 1496 male [60.3%]). Only 20% to 30% of potential donors had at least 1 kidney transplanted. The ML model with a single variable (Kidney Donor Profile Index) showed an AUROC of 0.69, F 1 score of 0.42, and accuracy of 0.64. Multivariable ML models based on basic a priori structured donor data showed similar metrics (logistic regression: AUROC = 0.70; F 1 score = 0.42; accuracy = 0.62; random forest classifier: AUROC = 0.69; F 1 score = 0.42; accuracy = 0.64). The classic NLP model (bag-of-words model) showed its best metrics (AUROC = 0.60; F 1 score = 0.35; accuracy = 0.59) by the logistic regression classifier. The advanced Bidirectional Encoder Representations From Transformers model showed comparable metrics (AUROC = 0.62; F 1 score = 0.39; accuracy = 0.69) only after appending basic donor information. Feature importance and SHAP detected the variables (and words) that affected the models most. Conclusions and Relevance Results of this cohort study suggest that models using ML can be applied to predict donors with high-risk kidneys not used for organ transplant, but the models still need further elaboration. The use of unstructured data is likely to expand the possibilities; further exploration of new approaches will be necessary to develop models with better predictive metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啦呼啦发布了新的文献求助10
刚刚
桑姊发布了新的文献求助10
刚刚
脑洞疼应助俭朴尔竹采纳,获得10
1秒前
αβ发布了新的文献求助10
2秒前
2秒前
卢皮卡发布了新的文献求助10
3秒前
3秒前
yzy完成签到,获得积分10
4秒前
ran完成签到,获得积分10
4秒前
852应助minrui采纳,获得10
5秒前
5秒前
三金发布了新的文献求助10
6秒前
yyq完成签到,获得积分10
6秒前
Akim应助安静的绮琴采纳,获得20
7秒前
FIN应助dellajj采纳,获得10
8秒前
yzy发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
EZboom完成签到,获得积分10
11秒前
11秒前
αβ完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
赘婿应助無羁采纳,获得10
12秒前
脑洞疼应助孟冬采纳,获得10
12秒前
ywq123发布了新的文献求助10
13秒前
13秒前
Singularity举报gxqqqqqqq求助涉嫌违规
13秒前
13秒前
小付发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
真知灼见完成签到 ,获得积分10
16秒前
彭于晏应助8546采纳,获得10
16秒前
16秒前
shuan发布了新的文献求助30
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644