亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of High-Risk Donors for Kidney Discard and Nonrecovery Using Structured Donor Characteristics and Unstructured Donor Narratives

医学 队列 接收机工作特性 回顾性队列研究 单中心 器官共享联合网络 肾移植 队列研究 移植 内科学 肝移植
作者
Junichiro Sageshima,Péter Than,Naeem Goussous,Neal Mineyev,Richard V. Perez
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:159 (1): 60-60 被引量:5
标识
DOI:10.1001/jamasurg.2023.4679
摘要

Importance Despite the unmet need, many deceased-donor kidneys are discarded or not recovered. Inefficient allocation and prolonged ischemia time are contributing factors, and early detection of high-risk donors may reduce organ loss. Objective To evaluate the feasibility of machine learning (ML) and natural language processing (NLP) classification of donors with kidneys that are used vs not used for organ transplant. Design, Setting, and Participants This retrospective cohort study used donor information (structured donor characteristics and unstructured donor narratives) from the United Network for Organ Sharing (UNOS). All donor offers to a single transplant center between January 2015 and December 2020 were used to train and validate ML models to predict donors who had at least 1 kidney transplanted (at our center or another center). The donor data from 2021 were used to test each model. Exposures Donor information was provided by UNOS to the transplant centers with potential transplant candidates. Each center evaluated the donor and decided within an allotted time whether to accept the kidney for organ transplant. Main Outcomes and Measures Outcome metrics of the test cohort included area under the receiver operating characteristic curve (AUROC), F 1 score, accuracy, precision, and recall of each ML classifier. Feature importance and Shapley additive explanation (SHAP) summaries were assessed for model explainability. Results The training/validation cohort included 9555 donors (median [IQR] age, 50 [36-58] years; 5571 male [58.3%]), and the test cohort included 2481 donors (median [IQR] age, 52 [40-59] years; 1496 male [60.3%]). Only 20% to 30% of potential donors had at least 1 kidney transplanted. The ML model with a single variable (Kidney Donor Profile Index) showed an AUROC of 0.69, F 1 score of 0.42, and accuracy of 0.64. Multivariable ML models based on basic a priori structured donor data showed similar metrics (logistic regression: AUROC = 0.70; F 1 score = 0.42; accuracy = 0.62; random forest classifier: AUROC = 0.69; F 1 score = 0.42; accuracy = 0.64). The classic NLP model (bag-of-words model) showed its best metrics (AUROC = 0.60; F 1 score = 0.35; accuracy = 0.59) by the logistic regression classifier. The advanced Bidirectional Encoder Representations From Transformers model showed comparable metrics (AUROC = 0.62; F 1 score = 0.39; accuracy = 0.69) only after appending basic donor information. Feature importance and SHAP detected the variables (and words) that affected the models most. Conclusions and Relevance Results of this cohort study suggest that models using ML can be applied to predict donors with high-risk kidneys not used for organ transplant, but the models still need further elaboration. The use of unstructured data is likely to expand the possibilities; further exploration of new approaches will be necessary to develop models with better predictive metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
59秒前
wyy完成签到,获得积分10
59秒前
docyu发布了新的文献求助10
1分钟前
docyu完成签到,获得积分20
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
幽默微笑完成签到,获得积分10
1分钟前
2分钟前
汉堡包应助docyu采纳,获得10
2分钟前
我是老大应助顺顺利利采纳,获得10
2分钟前
斯文败类应助beetes采纳,获得10
2分钟前
2分钟前
zgx完成签到 ,获得积分10
2分钟前
顺顺利利发布了新的文献求助10
2分钟前
2分钟前
2分钟前
bitsmhwq完成签到,获得积分10
2分钟前
bitsmhwq发布了新的文献求助10
2分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
丘比特应助homer采纳,获得10
3分钟前
3分钟前
3分钟前
homer发布了新的文献求助10
3分钟前
breeze完成签到,获得积分10
3分钟前
3分钟前
homer完成签到,获得积分20
4分钟前
4分钟前
TXZ06完成签到,获得积分10
5分钟前
5分钟前
qqq完成签到,获得积分10
5分钟前
阿桥完成签到,获得积分10
5分钟前
lty完成签到,获得积分20
5分钟前
乐乐应助dms采纳,获得30
5分钟前
6分钟前
dms发布了新的文献求助30
6分钟前
6分钟前
cqsuper完成签到,获得积分10
6分钟前
英俊的铭应助孔不尤采纳,获得10
6分钟前
岳莹晓完成签到 ,获得积分10
6分钟前
MOFS发布了新的文献求助10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995369
求助须知:如何正确求助?哪些是违规求助? 3535216
关于积分的说明 11267191
捐赠科研通 3275037
什么是DOI,文献DOI怎么找? 1806511
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809782