Extended-gate structure for carbon-based field effect transistor type formaldehyde gas sensor

材料科学 纳米技术 制作 场效应晶体管 晶体管 半导体 计算机科学 光电子学 电气工程 工程类 电压 医学 替代医学 病理
作者
Lin Shi,Liutang Gong,Yiwei Wang,Yuqing Li,Yong Zhang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:400: 134944-134944 被引量:8
标识
DOI:10.1016/j.snb.2023.134944
摘要

Field effect transistor (FET) type gas sensor plays a crucial role in real-time environmental monitoring, medical pre-diagnosis, and industrial control because of its trace hazardous gases detection capability, which can be attributed to the unique amplification of the electrical signal on its gate by FET. Limited by the nano-micro level manufacturing process, the controllable deposition of the tiny sensing gate composed of gas sensing materials and material selection limitations considering semiconductor process compatibility have become bottlenecks in developing FET-type gas sensors. Herein, based on a high-performance FET with semiconducting single-walled carbon nanotubes as the channel, a universal strategy of constructing an extended-gate structure by inkjet printing technology is proposed to realize the detection of trace gases. CuO widely used for HCHO detection is applied to this strategy, and the as-prepared EG-FET sensor has a limit of detection of 20 ppb for HCHO, good repeatability, long-term stability, and selectivity, which greatly improves the ability of conventional chemiresistive gas sensor to detect HCHO. The development of the EG structure makes the controlled deposition of gas sensing materials more accessible, and the introduction of inkjet printing expands the choices of sensing materials. In particular, it solves the issue of poor reproducibility in the fabrication of gas sensors from gas sensing materials and provides a feasible scheme for the reported excellent gas sensing materials from laboratory to application. We expect this work can provide a meaningful theoretical and experimental basis for the realization of high-performance trace gas sensors with the potential for on-chip integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助Ren采纳,获得30
刚刚
刚刚
心想事成完成签到,获得积分20
1秒前
脑洞疼应助林林总尔尔采纳,获得30
2秒前
3秒前
雪原白鹿完成签到 ,获得积分10
3秒前
忐忑的石头完成签到,获得积分10
4秒前
活泼之卉完成签到,获得积分10
5秒前
wanci应助明理雪碧采纳,获得10
5秒前
jackie发布了新的文献求助10
6秒前
6秒前
Crystal完成签到,获得积分10
9秒前
10秒前
Leohp完成签到,获得积分10
11秒前
浮生发布了新的文献求助10
11秒前
安静的滑板应助Wen采纳,获得20
11秒前
熙欢完成签到,获得积分10
12秒前
12秒前
藏獒完成签到,获得积分10
12秒前
13秒前
teadan完成签到,获得积分10
13秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
13秒前
大模型应助慈祥的翠桃采纳,获得10
14秒前
科目三应助慈祥的翠桃采纳,获得10
14秒前
传奇3应助慈祥的翠桃采纳,获得10
14秒前
无花果应助慈祥的翠桃采纳,获得10
14秒前
彭于晏应助慈祥的翠桃采纳,获得10
14秒前
小二郎应助慈祥的翠桃采纳,获得10
14秒前
VDC应助慈祥的翠桃采纳,获得80
14秒前
惠JUI完成签到,获得积分20
14秒前
Lucas应助慈祥的翠桃采纳,获得10
14秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
14秒前
深情凡柔完成签到,获得积分10
14秒前
11111完成签到,获得积分10
14秒前
Acer完成签到 ,获得积分10
16秒前
无花果应助www采纳,获得10
16秒前
AC小白完成签到,获得积分10
18秒前
jl完成签到,获得积分20
18秒前
19秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242146
求助须知:如何正确求助?哪些是违规求助? 2886591
关于积分的说明 8243909
捐赠科研通 2555131
什么是DOI,文献DOI怎么找? 1383250
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625469