Evaluation and design of photothermal conversion performance for multiple “complex-morphology” nanofluids via bidirectional deep neural network

纳米流体 材料科学 光热治疗 吸收(声学) 人工神经网络 摩尔吸收率 体积分数 航程(航空) 生物系统 纳米颗粒 计算机科学 纳米技术 光学 人工智能 复合材料 物理 生物
作者
Qiyan Ren,Yan Zhou,Lechuan Hu,Chengchao Wang,Jian Liu,Lanxin Ma,Linhua Liu
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:238: 121954-121954
标识
DOI:10.1016/j.applthermaleng.2023.121954
摘要

The optical absorption and scattering of plasmonic nanoparticles are crucial for optimizing photothermal conversion efficiency, which holds great potential in various applications. Evaluating the photothermal conversion performance of nanofluids with known geometry is a computationally expensive task. The design of nanofluids that exhibit optimal photothermal conversion performance poses a complex inverse problem. The necessity to explore a wide parameter space, which encompasses various factors such as the shape, size, and material of nanoparticles, contributes to this challenge. In this study, we employ a combination of machine learning with high-throughput radiative transfer calculations to conduct a comprehensive analysis of the entire photothermal conversion process for various nanofluids. The modulation of resonance absorption peaks and spectral absorption can be achieved by adjusting the shape, material constituents, and geometric parameters of nanoparticles. Meanwhile, we establish a design space dataset that encompasses 14,060 groups of nanofluids. Based on the dataset, we demonstrate as a proof of concept bidirectional deep neural network model that enables an efficient and reliable solution to both the forward and inverse problems. The results show that the absorptivity of SiO2@Au nanofluids is significantly influenced by the volume fraction, particularly when it falls within the range of 1 × 10−5 to 1 × 10−4. However, the impact is significantly reduced within the range of 1 × 10−4 to 1 × 10−3. Furthermore, the SiO2@Au nanofluids exhibit enhanced full spectral absorption characteristics at the core-shell ratio of 0.1. Our proposed model achieves a forward prediction of the solar absorption spectra with 99% accuracy and an inverse design of the geometric parameter with 93% accuracy. In comparison to the experimental results, the relative errors for the predicted and design efficiency are 0.42% and 0.82%, respectively. The design geometry parameters including the effective radius and volume fraction exhibit relative errors of 3.88% and 1.6%, respectively. This work provides a widely applicable and computationally efficient method for the evaluation and design of nanofluids in photothermal conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哥谭市的老丁完成签到,获得积分10
1秒前
欧阳发布了新的文献求助20
1秒前
yan123完成签到 ,获得积分10
1秒前
韩大大完成签到,获得积分10
1秒前
zhutier完成签到,获得积分10
1秒前
阔达的花卷完成签到 ,获得积分10
2秒前
2秒前
lucky完成签到,获得积分10
3秒前
5秒前
lucky发布了新的文献求助10
6秒前
乐乐应助朴素太阳采纳,获得10
6秒前
huamo完成签到,获得积分20
7秒前
7秒前
could完成签到,获得积分10
7秒前
chen发布了新的文献求助10
8秒前
10秒前
香蕉觅云应助lucky采纳,获得10
11秒前
喜东东发布了新的文献求助10
12秒前
残风发布了新的文献求助10
13秒前
伟钧完成签到,获得积分10
14秒前
朴素太阳完成签到,获得积分20
16秒前
16秒前
高兴123发布了新的文献求助10
17秒前
BJQ666完成签到,获得积分10
18秒前
英姑应助朴素的焦采纳,获得10
18秒前
哈哈悦发布了新的文献求助10
20秒前
喜东东完成签到,获得积分20
21秒前
姚夏完成签到 ,获得积分20
22秒前
梦梦完成签到 ,获得积分10
26秒前
27秒前
kiki完成签到 ,获得积分10
29秒前
高高完成签到 ,获得积分10
30秒前
Tysonqu完成签到,获得积分10
30秒前
学习完成签到 ,获得积分10
30秒前
32秒前
阿晓晓发布了新的文献求助10
33秒前
从容芮完成签到,获得积分0
33秒前
朴素的焦发布了新的文献求助10
33秒前
啊强完成签到 ,获得积分10
34秒前
永不言弃完成签到 ,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671775
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780180
捐赠科研通 2938852
什么是DOI,文献DOI怎么找? 1610260
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119