Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物化学 化学 生物
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe完成签到,获得积分10
2秒前
3秒前
诸葛高澜完成签到,获得积分10
4秒前
鳗鱼不尤完成签到,获得积分10
5秒前
LL完成签到,获得积分10
6秒前
Shirley完成签到,获得积分10
6秒前
kylin发布了新的文献求助10
6秒前
Liziqi823完成签到,获得积分10
7秒前
小太阳完成签到,获得积分10
7秒前
技术的不能发表完成签到 ,获得积分10
8秒前
9秒前
卡卡完成签到 ,获得积分10
9秒前
浮游应助丙队长采纳,获得10
10秒前
Aoia完成签到,获得积分10
11秒前
Hi完成签到,获得积分10
11秒前
kong完成签到,获得积分10
11秒前
左西完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
JFy完成签到 ,获得积分10
12秒前
怡然安南完成签到 ,获得积分10
14秒前
沫柠完成签到 ,获得积分10
15秒前
卡其嘛亮完成签到,获得积分10
16秒前
十五完成签到,获得积分10
16秒前
华仔应助东山采纳,获得10
17秒前
老猫头鹰完成签到,获得积分10
18秒前
liu完成签到 ,获得积分10
18秒前
20秒前
21秒前
小药童应助外星人采纳,获得10
22秒前
23秒前
23秒前
24秒前
24秒前
安琪完成签到,获得积分10
24秒前
wsqg123完成签到,获得积分10
25秒前
chang完成签到 ,获得积分10
26秒前
无限的千凝完成签到 ,获得积分10
27秒前
sm关注了科研通微信公众号
28秒前
不要慌完成签到 ,获得积分10
29秒前
30秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882