已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物 化学 生物化学
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mimi完成签到,获得积分10
2秒前
3秒前
吴小军发布了新的文献求助10
4秒前
misa完成签到 ,获得积分10
6秒前
超级天磊发布了新的文献求助10
6秒前
Augustines发布了新的文献求助10
7秒前
平常的老头完成签到,获得积分10
8秒前
任性铅笔完成签到 ,获得积分10
9秒前
镜花水月完成签到,获得积分10
14秒前
立青完成签到 ,获得积分10
17秒前
帅气的安柏完成签到,获得积分10
20秒前
传奇3应助xxf采纳,获得10
22秒前
科研fw完成签到 ,获得积分10
23秒前
山山而川完成签到 ,获得积分10
28秒前
YangMengting完成签到 ,获得积分10
31秒前
AUGS酒完成签到,获得积分10
32秒前
耶耶发布了新的文献求助10
32秒前
genius完成签到,获得积分10
36秒前
Leif完成签到 ,获得积分0
36秒前
hjc完成签到,获得积分10
39秒前
39秒前
自觉汽车完成签到,获得积分10
41秒前
43秒前
wanci应助Augustines采纳,获得10
47秒前
学霸宇大王完成签到,获得积分10
48秒前
勤奋帅帅完成签到,获得积分10
52秒前
薛定谔的猫完成签到,获得积分10
1分钟前
btmy16完成签到,获得积分20
1分钟前
1分钟前
ff发布了新的文献求助10
1分钟前
聆琳完成签到 ,获得积分10
1分钟前
lsh发布了新的文献求助10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
上官若男应助btmy16采纳,获得10
1分钟前
香蕉觅云应助快乐的易巧采纳,获得10
1分钟前
纭声完成签到 ,获得积分10
1分钟前
牛乃唐完成签到 ,获得积分10
1分钟前
1分钟前
傲娇的棉花糖完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136626
求助须知:如何正确求助?哪些是违规求助? 4336724
关于积分的说明 13510467
捐赠科研通 4174839
什么是DOI,文献DOI怎么找? 2289082
邀请新用户注册赠送积分活动 1289774
关于科研通互助平台的介绍 1231100