已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物 化学 生物化学
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助哆啦小奶龙采纳,获得10
刚刚
boldhammer完成签到 ,获得积分10
刚刚
漓一完成签到 ,获得积分10
2秒前
3秒前
4秒前
jingutaimi完成签到,获得积分10
5秒前
Caer完成签到,获得积分10
7秒前
7秒前
7秒前
机智灯泡完成签到 ,获得积分10
9秒前
10秒前
山复尔尔完成签到 ,获得积分10
10秒前
菲菲完成签到 ,获得积分10
11秒前
精明冰夏完成签到,获得积分10
11秒前
风不定发布了新的文献求助30
12秒前
李程阳完成签到 ,获得积分10
13秒前
小机灵发布了新的文献求助10
14秒前
twinkle完成签到 ,获得积分10
16秒前
小吴完成签到,获得积分10
17秒前
选兵完成签到,获得积分10
18秒前
伶俐的金连完成签到 ,获得积分10
18秒前
pass完成签到 ,获得积分10
18秒前
曲淳完成签到,获得积分10
19秒前
19秒前
哆啦小奶龙完成签到,获得积分10
20秒前
20秒前
爱听歌电灯胆完成签到,获得积分10
20秒前
忧伤的映阳完成签到 ,获得积分10
20秒前
Lucas应助吃死你啦啦采纳,获得10
23秒前
点点点完成签到 ,获得积分10
27秒前
清秀小霸王完成签到,获得积分10
27秒前
28秒前
丁昂霄完成签到 ,获得积分10
29秒前
嘁嘁嘁完成签到,获得积分10
30秒前
HH完成签到,获得积分10
32秒前
雅士白农学家完成签到,获得积分10
32秒前
兜兜风gf完成签到 ,获得积分10
33秒前
称心的冰安完成签到,获得积分10
33秒前
yinlao完成签到,获得积分10
34秒前
Vintoe完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504