Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物 化学 生物化学
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
xuanqing完成签到,获得积分10
1秒前
1秒前
汉堡包应助lily采纳,获得10
2秒前
Arron发布了新的文献求助10
2秒前
Tom完成签到,获得积分10
2秒前
布鲁塞尔土豆完成签到,获得积分10
3秒前
3秒前
3秒前
李健应助小鱼采纳,获得10
4秒前
开朗亦绿完成签到,获得积分10
4秒前
在水一方应助玉婷采纳,获得20
4秒前
4秒前
畅快远山发布了新的文献求助10
4秒前
6秒前
AIKaikai发布了新的文献求助50
6秒前
胜起完成签到,获得积分10
7秒前
蘑菇发布了新的文献求助10
8秒前
酷波er应助RJY采纳,获得10
8秒前
婷婷发布了新的文献求助10
9秒前
木子完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
10秒前
10秒前
666完成签到,获得积分20
10秒前
bkagyin应助LC采纳,获得10
11秒前
12秒前
12秒前
14秒前
N1shimiya发布了新的文献求助10
15秒前
lily发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
独特冬天完成签到,获得积分10
18秒前
何雨航发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452