Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物化学 化学 生物
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
无情的宛菡完成签到 ,获得积分10
2秒前
zxk发布了新的文献求助10
2秒前
科目三应助贝妮采纳,获得10
2秒前
远山完成签到,获得积分10
2秒前
科研通AI6应助苗条的静白采纳,获得200
3秒前
Yeee完成签到,获得积分10
3秒前
圆锥香蕉应助Hurob采纳,获得20
3秒前
hydrazine发布了新的文献求助10
4秒前
4秒前
科研通AI6应助aifd采纳,获得10
4秒前
科研通AI6应助科研狗采纳,获得10
4秒前
4秒前
蕾子完成签到,获得积分10
4秒前
4秒前
小苏哥哥发布了新的文献求助10
4秒前
YB完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
义气的妙松完成签到,获得积分10
6秒前
西红柿炒番茄完成签到,获得积分20
6秒前
7秒前
SciGPT应助123采纳,获得10
7秒前
李国华发布了新的文献求助10
7秒前
7秒前
8秒前
虚心凡灵发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
吼吼哈哈完成签到,获得积分10
9秒前
一粒尘埃完成签到,获得积分10
9秒前
9秒前
灰鸽舞完成签到 ,获得积分10
10秒前
Linden_bd完成签到 ,获得积分10
10秒前
泡泡球完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433563
求助须知:如何正确求助?哪些是违规求助? 4545956
关于积分的说明 14199843
捐赠科研通 4465748
什么是DOI,文献DOI怎么找? 2447658
邀请新用户注册赠送积分活动 1438788
关于科研通互助平台的介绍 1415767