已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物 化学 生物化学
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cnnnnn完成签到 ,获得积分10
1秒前
灵巧的沛山完成签到,获得积分10
1秒前
李悦发布了新的文献求助10
2秒前
桐桐应助果冻橙采纳,获得30
2秒前
3秒前
仰望星空发布了新的文献求助10
5秒前
NexusExplorer应助果冻橙采纳,获得10
6秒前
7秒前
9秒前
汉堡包应助燕绥采纳,获得10
10秒前
江野完成签到 ,获得积分10
12秒前
后陡门爱神完成签到 ,获得积分10
14秒前
15秒前
cjh发布了新的文献求助10
18秒前
梨凉完成签到,获得积分10
18秒前
Akim应助李悦采纳,获得10
19秒前
花深粥完成签到,获得积分10
19秒前
斯文无敌发布了新的文献求助30
21秒前
haocong发布了新的文献求助10
21秒前
CipherSage应助读书的时候采纳,获得10
22秒前
24秒前
B4完成签到 ,获得积分10
25秒前
26秒前
赘婿应助cjh采纳,获得10
28秒前
32秒前
rrrick发布了新的文献求助10
34秒前
愛研究完成签到,获得积分10
34秒前
Hey完成签到 ,获得积分10
35秒前
35秒前
35秒前
吉他独奏手完成签到,获得积分10
35秒前
wxyshare应助lucy采纳,获得10
39秒前
酷波er应助殷子安采纳,获得10
40秒前
Zefinity完成签到,获得积分10
41秒前
果冻橙发布了新的文献求助10
41秒前
乐乐应助天才美少女骚猪采纳,获得10
45秒前
WJane完成签到,获得积分10
47秒前
敏感的飞松完成签到 ,获得积分10
48秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934928
求助须知:如何正确求助?哪些是违规求助? 4202628
关于积分的说明 13058156
捐赠科研通 3977166
什么是DOI,文献DOI怎么找? 2179428
邀请新用户注册赠送积分活动 1195530
关于科研通互助平台的介绍 1106945