Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物化学 化学 生物
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨晨完成签到 ,获得积分10
1秒前
CipherSage应助guozizi采纳,获得10
2秒前
善学以致用应助李嘉乐采纳,获得10
3秒前
54老妖怪完成签到,获得积分10
7秒前
8秒前
共享精神应助dorrrr采纳,获得10
8秒前
SZQ发布了新的文献求助30
9秒前
可鹿丽完成签到 ,获得积分10
10秒前
懒羊羊发布了新的文献求助10
11秒前
orange完成签到,获得积分10
12秒前
13秒前
852应助Suki采纳,获得10
13秒前
lin发布了新的文献求助10
13秒前
yf完成签到,获得积分10
13秒前
隐形曼青应助xiaowu采纳,获得30
15秒前
cz完成签到,获得积分10
18秒前
猪猪hero应助Sakura采纳,获得10
18秒前
19秒前
科目三应助细腻的山水采纳,获得10
19秒前
不懈奋进应助shinen采纳,获得30
19秒前
19秒前
20秒前
21秒前
21秒前
21秒前
22秒前
22秒前
23秒前
chengmin发布了新的文献求助10
24秒前
25秒前
慕青应助xx采纳,获得30
25秒前
25秒前
26秒前
ccchaaang发布了新的文献求助10
26秒前
绵绵发布了新的文献求助10
27秒前
yangjiang发布了新的文献求助10
27秒前
Suki发布了新的文献求助10
27秒前
jianyulv发布了新的文献求助10
28秒前
科研通AI2S应助Leo采纳,获得10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3570704
求助须知:如何正确求助?哪些是违规求助? 3141418
关于积分的说明 9442950
捐赠科研通 2842751
什么是DOI,文献DOI怎么找? 1562469
邀请新用户注册赠送积分活动 731079
科研通“疑难数据库(出版商)”最低求助积分说明 718307