已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物化学 化学 生物
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的剑愁完成签到,获得积分10
1秒前
4秒前
皮凡发布了新的文献求助10
7秒前
脑洞疼应助xiaoxiao采纳,获得10
7秒前
chenjian完成签到,获得积分10
8秒前
852应助欢呼飞风采纳,获得10
8秒前
贾敬坤完成签到,获得积分10
8秒前
VDC应助诚心如意采纳,获得30
8秒前
左白易发布了新的文献求助10
8秒前
赘婿应助l123采纳,获得10
9秒前
觉皇完成签到,获得积分10
14秒前
ata发布了新的文献求助100
15秒前
16秒前
隐形曼青应助VAN喵采纳,获得10
17秒前
17秒前
Ayao完成签到,获得积分20
18秒前
18秒前
浮游应助hunter采纳,获得10
20秒前
mxq发布了新的文献求助20
20秒前
21秒前
21秒前
22秒前
Owen应助ndndd采纳,获得10
23秒前
l123发布了新的文献求助10
23秒前
23秒前
刘刘完成签到 ,获得积分10
25秒前
26秒前
小兔发布了新的文献求助10
26秒前
Chloe完成签到 ,获得积分10
26秒前
26秒前
28秒前
夏雪儿发布了新的文献求助10
29秒前
29秒前
糊涂的万发布了新的文献求助10
30秒前
zyw发布了新的文献求助10
31秒前
Hello应助小兔采纳,获得10
31秒前
33秒前
美味又健康完成签到 ,获得积分10
35秒前
36秒前
lilili完成签到,获得积分10
36秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443519
求助须知:如何正确求助?哪些是违规求助? 4553411
关于积分的说明 14241882
捐赠科研通 4475084
什么是DOI,文献DOI怎么找? 2452256
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794