Ordinal Logistic Regression Model for Predicting Employee Satisfaction from Organizational Climate

工作满意度 清晰 人事心理学 心理学 逻辑回归 有序逻辑 应用心理学 考试(生物学) 工作表现 工作态度 工作设计 回归分析 社会心理学 计算机科学 机器学习 古生物学 生物化学 化学 生物
作者
Carlos Alberto Espinosa-Pinos,José Miguel Acuña-Mayorga,Paúl Bladimir Acosta-Pérez,Patricio Lara-Álvarez
标识
DOI:10.1109/etcm58927.2023.10309093
摘要

The article introduces ordinal logistic regression as an alternative method for modelling the relationship between predictor variables and job satisfaction. It emphasizes the importance of comprehending job satisfaction factors to enhance organizational performance. The study employs a quantitative approach to predict job satisfaction levels among operational staff in the textile industry, using a test devised by Sonia Palma, consisting of 7 dimensions and 36 items for job satisfaction assessment. Additionally, a 50-items test measures the work climate. By applying a logistic model, the study categorizes job satisfaction into "low - medium" or "high" levels. The dataset encompasses socio-demographic variables and questions from the work climate test CL-SPC (Work Climate - Satisfaction, Productivity and Commitment), which includes five dimensions. Significant factors for the logistic regression model are identified through exploratory factor analysis. These include commitment, autonomy at work, leadership, interpersonal relationships, learning and personal development, clarity of job expectations, motivation, and performance. The analysis unveils associations between these factors and the likelihood of predicting job satisfaction levels. Motivation, job performance and clarity of job expectations emerge as influential predictors. The article recommends fostering a culture of commitment, empowering decision-making, and clearly defining job responsibilities to improve job satisfaction in the textile industry. In conclusion, ordinal logistic regression analysis deepens our understanding of job satisfaction factors in the textile industry, enabling organizations to implement strategies to increase job satisfaction and overall performance. The results of the study enrich our knowledge of job satisfaction and work climate in the textile industry, offering practical guidance to professionals responsible for talent management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Transition采纳,获得10
2秒前
CodeCraft应助我不吃葱采纳,获得10
4秒前
5秒前
jszhoucl完成签到,获得积分20
5秒前
Rondab给Francois的求助进行了留言
6秒前
6秒前
anyig完成签到,获得积分10
7秒前
7秒前
yyyyyxy发布了新的文献求助10
9秒前
11秒前
CipherSage应助hrdcrhf采纳,获得10
11秒前
wen_xxx发布了新的文献求助10
11秒前
情怀应助李李李采纳,获得10
13秒前
CA274ABTFY发布了新的文献求助20
13秒前
steven完成签到 ,获得积分10
13秒前
gwt发布了新的文献求助10
13秒前
wbh发布了新的文献求助10
17秒前
18秒前
11111111完成签到,获得积分10
19秒前
小晚完成签到,获得积分10
19秒前
ann发布了新的文献求助10
20秒前
23秒前
FashionBoy应助皮崇知采纳,获得10
24秒前
闹心发布了新的文献求助10
24秒前
yyyyyxy完成签到,获得积分10
24秒前
孙淼发布了新的文献求助20
26秒前
852应助思维隋采纳,获得10
27秒前
27秒前
sk4ajd发布了新的文献求助100
29秒前
29秒前
我不吃葱发布了新的文献求助10
30秒前
gwt完成签到,获得积分10
32秒前
LI369258发布了新的文献求助10
32秒前
SJY完成签到,获得积分10
32秒前
Hu发布了新的文献求助30
33秒前
shirai20001发布了新的文献求助10
34秒前
小二郎应助我不吃葱采纳,获得10
35秒前
皮崇知发布了新的文献求助10
35秒前
小绵羊完成签到 ,获得积分10
36秒前
半岛铁盒完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629