Photocatalytic and antifouling performance of titania-coated alumina membranes produced using a facile sol-gel dip-coating approach

生物污染 光催化 涂层 材料科学 溶胶凝胶 化学工程 浸涂 纳米技术 化学 催化作用 有机化学 工程类 生物化学
作者
Letícya Laís Coelho,Jamile dos Santos Vieira,Adriano Martins Hissanaga,Marcel Rosseti,Michaela Wilhelm,Dachamir Hotza,Regina de and Fátima Peralta Muniz Moreira
出处
期刊:Environmental Technology [Informa]
卷期号:45 (23): 4750-4765 被引量:1
标识
DOI:10.1080/09593330.2023.2283084
摘要

Photocatalytic membranes (PM) have been investigated as an antifouling strategy for membrane separation processes. Coating ceramic membranes with photocatalytic layers can provide a highly active surface capable of degrading foulants and smaller molecules improving the membrane's performance when the surface is irradiated by a suitable light. Nevertheless, the coating process often leads to pore blockage due to the formation or deposition of thick layers of photocatalyst on membrane surfaces, which modifies the original membranes' average pore size and reduces membrane permeability. A facile sol-gel dip coating process was used to produce PM without modifying the original surface morphology of alumina microfiltration membranes. A 3.7-fold increase in permeate volume after 90 min of permeation of an acetaminophen solution in continuous filtration mode under UV light (λ = 365 nm LED, 10W) using titania as photocatalyst compared to the bare alumina membrane without irradiation. Furthermore, fouling modelling proved a reduction in the fouling constant, while fouling mechanisms were not modified. Raman analysis showed 100% anatase formed on the membrane surface. Although membranes could remove up to 87% TOC for oily wastewater filtration, antifouling capabilities for this type of effluent were not observed for the photocatalytic membranes mainly due to fouling inside the pores and light attenuation due to the thick fouling layer on the membrane surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怕孤独的聪展完成签到,获得积分10
3秒前
4秒前
4秒前
李健的小迷弟应助Lisa田采纳,获得20
4秒前
4秒前
邓年念完成签到,获得积分10
7秒前
7秒前
Windsea完成签到,获得积分10
7秒前
李健应助苟文锋采纳,获得10
8秒前
何雨航发布了新的文献求助10
8秒前
9秒前
9秒前
Lucas应助lily采纳,获得10
10秒前
10秒前
lhr关闭了lhr文献求助
10秒前
11秒前
12秒前
13秒前
隐形曼青应助科研进化中采纳,获得10
13秒前
顶上之战发布了新的文献求助30
14秒前
千早爱音应助123采纳,获得10
16秒前
16秒前
chenmeimei2012完成签到 ,获得积分10
17秒前
17秒前
John发布了新的文献求助10
18秒前
19秒前
苟文锋发布了新的文献求助10
20秒前
21秒前
eating完成签到,获得积分10
22秒前
Windsea发布了新的文献求助10
23秒前
23秒前
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
清脆天空发布了新的文献求助10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452