Modelling of Bioelectrochemical Systems: Biophysicochemical Processes and Mathematical Methods

水准点(测量) 计算机科学 生化工程 相互依存 数学模型 工艺工程 系统工程 工程类 数学 统计 大地测量学 政治学 法学 地理
作者
G.S. Jadhav,Yogita Jagtap,Gourav Dhar Bhowmick,Makarand M. Ghangrekar
标识
DOI:10.1002/9783527839001.ch21
摘要

Chapter 21 Modelling of Bioelectrochemical Systems: Biophysicochemical Processes and Mathematical Methods Gorakhanath S. Jadhav, Gorakhanath S. Jadhav Indian Institute of Technology Kharagpur, School of Environmental Science and Engineering, Kharagpur, 721302 West Bengal, IndiaSearch for more papers by this authorYogita D. Jagtap, Yogita D. Jagtap Sardar Vallabhbhai National Institute of Technology, Applied Mathematics and Humanities Department, Surat, 395007 Gujarat, IndiaSearch for more papers by this authorGourav D. Bhowmick, Gourav D. Bhowmick Indian Institute of Technology Kharagpur, Department of Agricultural and Food Engineering, Kharagpur, 721302 West Bengal, IndiaSearch for more papers by this authorMakarand M. Ghangrekar, Makarand M. Ghangrekar Indian Institute of Technology Kharagpur, Department of Civil Engineering, Kharagpur, 721302 West Bengal, IndiaSearch for more papers by this author Gorakhanath S. Jadhav, Gorakhanath S. Jadhav Indian Institute of Technology Kharagpur, School of Environmental Science and Engineering, Kharagpur, 721302 West Bengal, IndiaSearch for more papers by this authorYogita D. Jagtap, Yogita D. Jagtap Sardar Vallabhbhai National Institute of Technology, Applied Mathematics and Humanities Department, Surat, 395007 Gujarat, IndiaSearch for more papers by this authorGourav D. Bhowmick, Gourav D. Bhowmick Indian Institute of Technology Kharagpur, Department of Agricultural and Food Engineering, Kharagpur, 721302 West Bengal, IndiaSearch for more papers by this authorMakarand M. Ghangrekar, Makarand M. Ghangrekar Indian Institute of Technology Kharagpur, Department of Civil Engineering, Kharagpur, 721302 West Bengal, IndiaSearch for more papers by this author Book Editor(s):Makarand M. Ghangrekar, Makarand M. Ghangrekar Indian Institute of Technology Kharagpur, Kharagpur, IndiaSearch for more papers by this authorNarcis M. Duteanu, Narcis M. Duteanu University of Nebraska–Lincoln, NE, United StatesSearch for more papers by this authorRao Y. Surampalli, Rao Y. Surampalli Global Institute for Energy, Environment and Sustainability (GIEES), KS, United StatesSearch for more papers by this authorTian C. Zhang, Tian C. Zhang Timisoara Polytechnic University, Timisoara, RomaniaSearch for more papers by this author First published: 10 November 2023 https://doi.org/10.1002/9783527839001.ch21 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Bioelectrochemical systems (BESs) exhibit the intricacy of physical phenomena and bioelectrochemical processes due to their interdependency on several factors, including the nature of the electrodes, the composition of the electrolyte, the reaction kinetics, reactor configuration, the type of inoculum, the type of substrate, and operating conditions. Overall, the intricacy of these systems makes it challenging to understand optimum operating conditions and reactor configurations to optimize the output of the system. Developing fundamental concept and based on that a mathematical model can help in predicting the system's performance without constructing a physical model well beforehand to reduce the human and economic drudgery. It can be used to simulate the behaviour of real-world systems and thus provide profound knowledge of the systems through careful examination with the right mathematical tools. It can play an essential role in research on BESs, which can help to accelerate these systems' contribution to sustainable development. This chapter overviews various physical phenomena and bioelectrochemical processes involved in BESs with their characteristics and mathematical tools to address these phenomena/processes. This will serve as a reference benchmark for determining which model best suits the specific purpose while modelling any BESs for real-life applications. References Abel , A.J. and Clark , D.S. ( 2021 ). A comprehensive modeling analysis of formate-mediated microbial electrosynthesis** . ChemSusChem 14 ( 1 ): 344 – 355 . https://doi.org/10.1002/cssc.202002079 . 10.1002/cssc.202002079 CASPubMedWeb of Science®Google Scholar Abul , A. , Zhang , J. , Steidl , R. et al. ( 2016 ). Microbial fuel cells: control-oriented modeling and experimental validation . In: Proceedings of the American Control Conference, 2016-July , 412 – 417 . https://doi.org/10.1109/ACC.2016.7524949 . 10.1109/ACC.2016.7524949 Google Scholar Anbu , S. and Senthilkumar , M. ( 2018 ). Modelling and analysis of continuous stirred tank reactor through simulation . Asian Journal of Engineering and Applied Technology 7 ( 1 ): 78 – 83 . https://doi.org/10.51983/ajeat-2018.7.1.970 . 10.51983/ajeat-2018.7.1.970 Google Scholar Behera , M. , Jana , P.S. , More , T.T. , and Ghangrekar , M.M. ( 2010 ). Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH . Bioelectrochemistry 79 ( 2 ): 228 – 233 . https://doi.org/10.1016/J.BIOELECHEM.2010.06.002 . 10.1016/j.bioelechem.2010.06.002 CASPubMedWeb of Science®Google Scholar Bernardi , D.M. and Verbrugge , M.W. ( 1991 ). Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte . AIChE Journal 37 ( 8 ): 1151 – 1163 . https://doi.org/10.1002/aic.690370805 . 10.1002/aic.690370805 CASWeb of Science®Google Scholar Bhowmick , G.D. , Neethu , B. , Ghangrekar , M.M. , and Banerjee , R. ( 2020 ). Improved performance of microbial fuel cell by in situ methanogenesis suppression while treating fish market wastewater . Applied Biochemistry and Biotechnology 192 ( 3 ): 1060 – 1075 . https://doi.org/10.1007/s12010-020-03366-y . 10.1007/s12010-020-03366-y CASWeb of Science®Google Scholar Boas , J.V. , Oliveira , V.B. , Simões , M. , and Pinto , A.M.F.R. ( 2022 ). A 1D model for a single chamber microbial fuel cell . Chemical Engineering Research and Design 184 : 627 – 636 . https://doi.org/10.1016/j.cherd.2022.06.030 . 10.1016/j.cherd.2022.06.030 CASWeb of Science®Google Scholar Chakraborty , I. , Ghosh , D. , Sathe , S.M. et al. ( 2021 ). Investigating the efficacy of CeO 2 multi-layered triangular nanosheets for augmenting cathodic hydrogen peroxide production in microbial fuel cell . Electrochimica Acta 398 : https://doi.org/10.1016/j.electacta.2021.139341 . 10.1016/j.electacta.2021.139341 Web of Science®Google Scholar Cheng , S. and Logan , B.E. ( 2007 ). Sustainable and efficient biohydrogen production via electrohydrogenesis . Proceedings of the National Academy of Sciences of the United States of America 104 ( 47 ): 18871 – 18873 . https://doi.org/10.1073/pnas.0706379104 . 10.1073/pnas.0706379104 CASPubMedWeb of Science®Google Scholar Cheng , S. , Xing , D. , Call , D.F. , and Logan , B.E. ( 2009 ). Direct biological conversion of electrical current into methane by electromethanogenesis . Environmental Science and Technology 43 ( 10 ): 3953 – 3958 . https://doi.org/10.1021/es803531g . 10.1021/es803531g CASPubMedWeb of Science®Google Scholar Das , S. , Diels , L. , Pant , D. et al. ( 2020 ). Review—microbial electrosynthesis: a way towards the production of electro-commodities through carbon sequestration with microbes as biocatalysts . Journal of The Electrochemical Society 167 ( 15 ): 155510 . https://doi.org/10.1149/1945-7111/abb836 . 10.1149/1945-7111/abb836 Web of Science®Google Scholar Esfandyari , M. , Fanaei , M.A. , Gheshlaghi , R. , and Akhavan Mahdavi , M. ( 2017 ). Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella . Chemical Engineering Research and Design 117 : 34 – 42 . https://doi.org/10.1016/j.cherd.2016.09.016 . 10.1016/j.cherd.2016.09.016 CASWeb of Science®Google Scholar Gadkari , S. , Gu , S. , and Sadhukhan , J. ( 2018 ). Towards automated design of bioelectrochemical systems: a comprehensive review of mathematical models . Chemical Engineering Journal 343 ( February ): 303 – 316 . https://doi.org/10.1016/j.cej.2018.03.005 . 10.1016/j.cej.2018.03.005 CASGoogle Scholar Gadkari , S. , Gu , S. , and Sadhukhan , J. ( 2019a ). Two-dimensional mathematical model of an air-cathode microbial fuel cell with graphite fiber brush anode . Journal of Power Sources 441 : 1 – 42 . https://doi.org/10.1016/j.jpowsour.2019.227145 . 10.1016/j.jpowsour.2019.227145 Web of Science®Google Scholar Gadkari , S. , Shemfe , M. , and Sadhukhan , J. ( 2019b ). Microbial fuel cells: a fast converging dynamic model for assessing system performance based on bioanode kinetics . International Journal of Hydrogen Energy 44 ( 29 ): 15377 – 15386 . https://doi.org/10.1016/j.ijhydene.2019.04.065 . 10.1016/j.ijhydene.2019.04.065 CASWeb of Science®Google Scholar Garg , A. , Vijayaraghavan , V. , Mahapatra , S.S. et al. ( 2014 ). Performance evaluation of microbial fuel cell by artificial intelligence methods . Expert Systems with Applications 41 ( 4 PART 1 ): 1389 – 1399 . https://doi.org/10.1016/j.eswa.2013.08.038 . 10.1016/j.eswa.2013.08.038 Web of Science®Google Scholar Ghangrekar , M. M. ( 2022 ). Wastewater to water . 181–205 . https://doi.org/10.1007/978-981-19-4048-4 . 10.1007/978?981?19?4048?4 Google Scholar Ghangrekar , M.M. , Bhowmick , G.D. , and Sathe , S.M. ( 2020 ). An overview of membrane bioreactor coupled bioelectrochemical systems . Integrated Microbial Fuel Cells for Wastewater Treatment 249–272 : https://doi.org/10.1016/B978-0-12-817493-7.00012-6 . 10.1016/B978-0-12-817493-7.00012-6 Google Scholar Ghangrekar , M.M. and Shinde , V.B. ( 2007 ). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production . Bioresource Technology 98 ( 15 ): 2879 – 2885 . https://doi.org/10.1016/j.biortech.2006.09.050 . 10.1016/j.biortech.2006.09.050 CASPubMedWeb of Science®Google Scholar Gharbi , R. , Gomez Vidales , A. , Omanovic , S. , and Tartakovsky , B. ( 2022 ). Mathematical model of a microbial electrosynthesis cell for the conversion of carbon dioxide into methane and acetate . Journal of CO 2 Utilization 59 ( February ): 101956 . https://doi.org/10.1016/j.jcou.2022.101956 . 10.1016/j.jcou.2022.101956 Google Scholar Gupta , A. , Das , S. , and Ghangrekar , M.M. ( 2020 ). Optimal cathodic imposed potential and appropriate catalyst for the synthesis of hydrogen peroxide in microbial electrolysis cell . Chemical Physics Letters 754 : https://doi.org/10.1016/j.cplett.2020.137690 . 10.1016/j.cplett.2020.137690 Web of Science®Google Scholar Hamelers , H.V.M. , ter Heijne , A. , Stein , N. et al. ( 2011 ). Butler-Volmer-Monod model for describing bio-anode polarization curves . Bioresource Technology 102 ( 1 ): 381 – 387 . https://doi.org/10.1016/j.biortech.2010.06.156 . 10.1016/j.biortech.2010.06.156 CASPubMedWeb of Science®Google Scholar Jadhav , D.A. , Carmona-Martínez , A.A. , Chendake , A.D. et al. ( 2021 ). Modeling and optimization strategies towards performance enhancement of microbial fuel cells . Bioresource Technology 320 ( PA ): 124256 . https://doi.org/10.1016/j.biortech.2020.124256 . 10.1016/j.biortech.2020.124256 Google Scholar Jadhav , G.S. and Ghangrekar , M.M. ( 2008 ). Improving performance of MFC by design alteration and adding cathodic electrolytes . Applied Biochemistry and Biotechnology 151 ( 2–3 ): 319 – 332 . https://doi.org/10.1007/s12010-008-8195-2 . 10.1007/s12010-008-8195-2 CASWeb of Science®Google Scholar Jadhav , G.S. and Ghangrekar , M.M. ( 2009 ). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration . Bioresource Technology 100 ( 2 ): 717 – 723 . https://doi.org/10.1016/j.biortech.2008.07.041 . 10.1016/j.biortech.2008.07.041 CASPubMedWeb of Science®Google Scholar Jayasinghe , N. , Franks , A. , Nevin , K.P. , and Mahadevan , R. ( 2014 ). Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation . Biotechnology Journal 9 ( 10 ): 1350 – 1361 . https://doi.org/10.1002/biot.201400068 . 10.1002/biot.201400068 CASPubMedWeb of Science®Google Scholar Kovárová-Kovar , K. and Egli , T. ( 1998 ). Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics . Microbiology and Molecular Biology Reviews 62 ( 3 ): 646 – 666 . https://doi.org/10.1128/mmbr.62.3.646-666.1998 . 10.1128/MMBR.62.3.646-666.1998 CASPubMedWeb of Science®Google Scholar Laidler , K.J. ( 1984 ). The development of the Arrhenius equation . Journal of Chemical Education 61 ( 6 ): 494 – 498 . https://doi.org/10.1021/ed061p494 . 10.1021/ed061p494 CASWeb of Science®Google Scholar Lesnik , K.L. and Liu , H. ( 2017 ). Predicting microbial fuel cell biofilm communities and bioreactor performance using artificial neural networks . Environmental Science and Technology 51 ( 18 ): 10881 – 10892 . https://doi.org/10.1021/acs.est.7b01413 . 10.1021/acs.est.7b01413 CASWeb of Science®Google Scholar Li , Z. , Fu , Q. , Su , H. et al. ( 2022 ). Model development of bioelectrochemical systems: a critical review from the perspective of physiochemical principles and mathematical methods . Water Research 226 ( October ): 119311 . https://doi.org/10.1016/j.watres.2022.119311 . 10.1016/j.watres.2022.119311 Google Scholar Limoli , D.H. , Jones , C.J. , and Wozniak , D.J. ( 2015 ). Bacterial extracellular polysaccharides in biofilm formation and function . Microbial Biofilms 3 : 223 – 247 . https://doi.org/10.1128/9781555817466.ch11 . 10.1128/9781555817466.ch11 Google Scholar Mankad , T. and Bungay , H.R. ( 1988 ). Model for microbial growth with more than one limiting nutrient . Journal of Biotechnology 7 ( 2 ): 161 – 166 . https://doi.org/10.1016/0168-1656(88)90062-4 . 10.1016/0168-1656(88)90062-4 CASWeb of Science®Google Scholar Mann , R.F. , Amphlett , J.C. , Peppley , B.A. , and Thurgood , C.P. ( 2006 ). Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells . Journal of Power Sources 161 ( 2 ): 775 – 781 . https://doi.org/10.1016/j.jpowsour.2006.05.026 . 10.1016/j.jpowsour.2006.05.026 CASWeb of Science®Google Scholar Marcus , A.K. , Torres , C.I. , and Rittmann , B.E. ( 2007 ). Conduction-based modeling of the biofilm anode of a microbial fuel cell . Biotechnology and Bioengineering 98 ( 6 ): 1171 – 1182 . https://doi.org/10.1002/BIT.21533 . 10.1002/bit.21533 CASPubMedWeb of Science®Google Scholar Mardanpour , M.M. and Yaghmaei , S. ( 2017 ). Dynamical analysis of microfluidic microbial electrolysis cell via integrated experimental investigation and mathematical modeling . Electrochimica Acta 227 : 317 – 329 . https://doi.org/10.1016/j.electacta.2017.01.041 . 10.1016/j.electacta.2017.01.041 CASWeb of Science®Google Scholar Mardanpour , M.M. , Yaghmaei , S. , and Kalantar , M. ( 2017 ). Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters . Journal of Power Sources 342 : 1017 – 1031 . https://doi.org/10.1016/j.jpowsour.2017.01.012 . 10.1016/j.jpowsour.2017.01.012 CASWeb of Science®Google Scholar Monod , J. ( 1949 ). The Growth of Bacterial Cultures . Annual Reviews in M 3 ( Xl ): 371 – 394 . CASGoogle Scholar Nagy , E. ( 2019a ). Diffusion through a plane membrane layer . Basic Equations of Mass Transport Through a Membrane Layer 91–118 : https://doi.org/10.1016/b978-0-12-813722-2.00005-4 . 10.1016/b978?0?12?813722?2.00005?4 Google Scholar Nagy , E. ( 2019b ). Diffusive plus convective mass transport through a plane membrane layer . In Basic Equations of Mass Transport Through a Membrane Layer. https://doi.org/10.1016/b978-0-12-813722-2.00007-8 . 10.1016/b978?0?12?813722?2.00007?8 Google Scholar Neethu , B. , Bhowmick , G.D. , and Ghangrekar , M.M. ( 2018 ). Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator . Biochemical Engineering Journal 133 : 205 – 213 . https://doi.org/10.1016/j.bej.2018.02.014 . 10.1016/j.bej.2018.02.014 CASWeb of Science®Google Scholar Nevin , K.P. , Woodard , T.L. , Franks , A.E. et al. ( 2010 ). Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds . MBio 1 ( 2 ): https://doi.org/10.1128/mBio.00103-10 . 10.1128/mBio.00103-10 PubMedWeb of Science®Google Scholar Okpokwasili , G.C. and Nweke , C.O. ( 2006 ). Microbial growth and substrate utilization kinetics . African Journal of Biotechnology 5 ( 4 ): 305 – 317 . CASWeb of Science®Google Scholar Oliveira , V.B. , Simões , M. , Melo , L.F. , and Pinto , A.M.F.R. ( 2013a ). A 1D mathematical model for a microbial fuel cell . Energy 61 : 463 – 471 . https://doi.org/10.1016/j.energy.2013.08.055 . 10.1016/j.energy.2013.08.055 CASWeb of Science®Google Scholar Oliveira , V.B. , Simões , M. , Melo , L.F. , and Pinto , A.M.F.R. ( 2013b ). Overview on the developments of microbial fuel cells . Biochemical Engineering Journal 73 : 53 – 64 . https://doi.org/10.1016/j.bej.2013.01.012 . 10.1016/j.bej.2013.01.012 CASWeb of Science®Google Scholar Ortiz-Martínez , V.M. , Salar-García , M.J. , de los Ríos , A.P. et al. ( 2015 ). Developments in microbial fuel cell modeling . Chemical Engineering Journal 271 : 50 – 60 . https://doi.org/10.1016/j.cej.2015.02.076 . 10.1016/j.cej.2015.02.076 CASWeb of Science®Google Scholar Oyewole , T.E. , Osisami , T.F. , Ayedun , J.S. et al. ( 2021 ). Concept and kinetics of microbial growth and death: a review . Himalayan Journal of Agriculture 2 ( 5 ): 13 – 17 . https://doi.org/10.47310/Hja.2021.v02i05.003 . 10.47310/Hja.2021.v02i05.003 Google Scholar Pant , D. , Singh , A. , Van Bogaert , G. et al. ( 2012 ). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters . RSC Advances 2 ( 4 ): 1248 – 1263 . https://doi.org/10.1039/c1ra00839k . 10.1039/C1RA00839K CASWeb of Science®Google Scholar Pathapati , P.R. , Xue , X. , and Tang , J. ( 2005 ). A new dynamic model for predicting transient phenomena in a PEM fuel cell system . Renewable Energy 30 ( 1 ): 1 – 22 . https://doi.org/10.1016/j.renene.2004.05.001 . 10.1016/j.renene.2004.05.001 CASWeb of Science®Google Scholar Picioreanu , C. , Head , I.M. , Katuri , K.P. et al. ( 2007 ). A computational model for biofilm-based microbial fuel cells . Water Research 41 ( 13 ): 2921 – 2940 . https://doi.org/10.1016/j.watres.2007.04.009 . 10.1016/j.watres.2007.04.009 CASPubMedWeb of Science®Google Scholar Picioreanu , C. , Katuri , K.P. , Van Loosdrecht , M.C.M. et al. ( 2010 ). Modelling microbial fuel cells with suspended cells and added electron transfer mediator . Journal of Applied Electrochemistry 40 ( 1 ): 151 – 162 . https://doi.org/10.1007/s10800-009-9991-2 . 10.1007/s10800-009-9991-2 CASWeb of Science®Google Scholar Ping , Q. , Zhang , C. , Chen , X. et al. ( 2014 ). Mathematical model of dynamic behavior of microbial desalination cells for simultaneous wastewater treatment and water desalination . Environmental Science and Technology 48 ( 21 ): 13010 – 13019 . https://doi.org/10.1021/es504089x . 10.1021/es504089x CASPubMedWeb of Science®Google Scholar Pinto , R.P. , Srinivasan , B. , Manuel , M.F. , and Tartakovsky , B. ( 2010 ). A two-population bio-electrochemical model of a microbial fuel cell . Bioresource Technology 101 ( 14 ): 5256 – 5265 . https://doi.org/10.1016/j.biortech.2010.01.122 . 10.1016/j.biortech.2010.01.122 CASPubMedWeb of Science®Google Scholar Recio-Garrido , D. , Perrier , M. , and Tartakovsky , B. ( 2016 ). Combined bioelectrochemical-electrical model of a microbial fuel cell . Bioprocess and Biosystems Engineering 39 ( 2 ): 267 – 276 . https://doi.org/10.1007/s00449-015-1510-8 . 10.1007/s00449-015-1510-8 CASPubMedWeb of Science®Google Scholar Renslow , R. , Babauta , J. , Kuprat , A. et al. ( 2013 ). Modeling biofilms with dual extracellular electron transfer mechanisms . Physical Chemistry Chemical Physics 15 ( 44 ): 19262 – 19283 . https://doi.org/10.1039/c3cp53759e . 10.1039/c3cp53759e CASPubMedWeb of Science®Google Scholar Rodriguez , J. and Premier , G.C. ( 2010 ). Towards a mathematical description of bioelectrochemical systems . Bioelectrochemical Systems 423 – 448 . https://biogroup.usc.es/node/1450 . Google Scholar Rozendal , R.A. , Leone , E. , Keller , J. , and Rabaey , K. ( 2009 ). Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system . Electrochemistry Communications 11 ( 9 ): 1752 – 1755 . https://doi.org/10.1016/j.elecom.2009.07.008 . 10.1016/j.elecom.2009.07.008 CASWeb of Science®Google Scholar Sathe , S.M. , Bhowmick , G.D. , Dubey , B.K. , and Ghangrekar , M.M. ( 2020 ). Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system . Bioprocess and Biosystems Engineering 43 ( 11 ): 2075 – 2084 . https://doi.org/10.1007/S00449-020-02396-4 . 10.1007/s00449-020-02396-4 CASPubMedWeb of Science®Google Scholar Taherzadeh , D. , Picioreanu , C. , and Horn , H. ( 2012 ). Mass transfer enhancement in moving biofilm structures . Biophysical Journal 102 ( 7 ): 1483 – 1492 . https://doi.org/10.1016/j.bpj.2012.02.033 . 10.1016/j.bpj.2012.02.033 CASPubMedWeb of Science®Google Scholar Tsompanas , M.A. , Adamatzky , A. , Ieropoulos , I. et al. ( 2017 ). Cellular non-linear network model of microbial fuel cell . BioSystems 156–157 : 53 – 62 . https://doi.org/10.1016/j.biosystems.2017.04.003 . 10.1016/j.biosystems.2017.04.003 CASWeb of Science®Google Scholar Venkata Mohan , S. , Velvizhi , G. , Annie Modestra , J. , and Srikanth , S. ( 2014 ). Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements . Renewable and Sustainable Energy Reviews 40 : 779 – 797 . https://doi.org/10.1016/j.rser.2014.07.109 . 10.1016/j.rser.2014.07.109 CASWeb of Science®Google Scholar Wanner , O. and Reichert , P. ( 1996 ). Mathematical modeling of mixed-culture biofilms . Biotechnology and Bioengineering 49 ( 2 ): 172 – 184 . https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N. 10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N CASPubMedWeb of Science®Google Scholar Yang , Z. and Yang , A. ( 2020 ). Modelling the impact of operating mode and electron transfer mechanism in microbial fuel cells with two-species anodic biofilm . Biochemical Engineering Journal 158 ( November 2019 ): 107560 . https://doi.org/10.1016/j.bej.2020.107560 . 10.1016/j.bej.2020.107560 Google Scholar Zeng , Y. , Choo , Y.F. , Kim , B.H. , and Wu , P. ( 2010 ). Modelling and simulation of two-chamber microbial fuel cell . Journal of Power Sources 195 ( 1 ): 79 – 89 . https://doi.org/10.1016/j.jpowsour.2009.06.101 . 10.1016/j.jpowsour.2009.06.101 CASWeb of Science®Google Scholar Zhang , X. and Halme , A. ( 1995 ). MODELLING OF A MICROBIAL FUEL CELL PROCESS Xia-Chang Zhang and Aarne Halme Automation Technology Laboratory, Helsinki University of Technology, 02150 ESPOO, FINLAND . Biotechnology Letters 17 ( 8 ): 809 – 814 . 10.1007/BF00129009 CASWeb of Science®Google Scholar Zhao , L. , Naviaux , J. , Brouwer , J. , & Hochbaum , A. ( 2014 ). Modeling of polarization losses of a microbial fuel cell. ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2014 Collocated with the ASME 2014 8th International Conference on Energy Sustainability , 0–6. https://doi.org/10.1115/FuelCell2014-6388 10.1115/FuelCell2014?6388 Google Scholar Microbial Electrochemical Technologies: Fundamentals and Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
她的城完成签到,获得积分10
1秒前
Hello_Suning完成签到 ,获得积分10
4秒前
沐颜完成签到 ,获得积分10
7秒前
啥时候能早睡完成签到 ,获得积分10
10秒前
Yang完成签到,获得积分10
10秒前
xuedan3000完成签到 ,获得积分10
11秒前
黎明完成签到,获得积分20
14秒前
路小雨完成签到 ,获得积分10
17秒前
cccyyb完成签到,获得积分10
17秒前
烟花应助黎明采纳,获得10
18秒前
菓小柒完成签到 ,获得积分10
18秒前
munibai应助威威采纳,获得10
18秒前
哆啦A梦完成签到,获得积分10
19秒前
暮雪残梅完成签到 ,获得积分10
19秒前
小栩完成签到 ,获得积分10
20秒前
丫头完成签到 ,获得积分10
25秒前
huhuhu完成签到,获得积分10
26秒前
27秒前
自由赛风完成签到 ,获得积分10
28秒前
现代的人达完成签到,获得积分10
29秒前
小石榴的爸爸完成签到 ,获得积分10
29秒前
糖糖谈糖糖完成签到,获得积分10
31秒前
32秒前
李健飞完成签到 ,获得积分10
32秒前
轩辕德地发布了新的文献求助10
33秒前
33秒前
34秒前
小石榴爸爸完成签到 ,获得积分10
35秒前
云辞忧完成签到,获得积分10
35秒前
LSi奇完成签到 ,获得积分10
36秒前
红海发布了新的文献求助10
38秒前
LXZ完成签到,获得积分10
40秒前
yk完成签到 ,获得积分10
40秒前
慕容飞凤完成签到,获得积分10
42秒前
jbear完成签到 ,获得积分10
43秒前
王灿灿完成签到,获得积分10
45秒前
魁梧的寻菡完成签到 ,获得积分10
46秒前
田様应助eth采纳,获得10
46秒前
十一完成签到 ,获得积分10
48秒前
carly完成签到 ,获得积分10
48秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Angio-based 3DStent for evaluation of stent expansion 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2994112
求助须知:如何正确求助?哪些是违规求助? 2654507
关于积分的说明 7180415
捐赠科研通 2289845
什么是DOI,文献DOI怎么找? 1213765
版权声明 592720
科研通“疑难数据库(出版商)”最低求助积分说明 592419