Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor

卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 深度学习 脑瘤 图像分割 磁共振成像 人工神经网络 机器学习 放射科 医学 病理
作者
Atika Akter,Nazeela Nosheen,Sabbir Ahmed,Mariom Hossain,Mohammad Abu Yousuf,Mohammad Ali Abdullah Almoyad,Khondokar Fida Hasan,Mohammad Ali Moni
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122347-122347 被引量:76
标识
DOI:10.1016/j.eswa.2023.122347
摘要

Early diagnosis of brain tumors is critical for enhancing patient prognosis and treatment options, while accurate classification and segmentation of brain tumors are vital for developing personalized treatment strategies. Despite the widespread use of Magnetic Resonance Imaging (MRI) for brain examination and advances in AI-based detection methods, building an accurate and efficient model for detecting and categorizing tumors from MRI images remains a challenge. To address this problem, we proposed a deep Convolutional Neural Network (CNN)-based architecture for automatic brain image classification into four classes and a U-Net-based segmentation model. Using six benchmarked datasets, we tested the classification model and trained the segmentation model, enabling side-by-side comparison of the impact of segmentation on tumor classification in brain MRI images. We also evaluated two classification methods based on accuracy, recall, precision, and AUC. Our developed novel deep learning-based model for brain tumor classification and segmentation outperforms existing pre-trained models across all six datasets. The results demonstrate that our classification model achieved the highest accuracy of 98.7% in a merged dataset and 98.8% with the segmentation approach, with the highest classification accuracy reaching 97.7% among the four individual datasets. Thus, this novel framework could be applicable in clinics for the automatic identification and segmentation of brain tumors utilizing MRI scan input images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽思远完成签到,获得积分10
刚刚
科研通AI5应助糊涂的百川采纳,获得10
1秒前
弱水发布了新的文献求助10
1秒前
hippo发布了新的文献求助10
1秒前
苒苒完成签到,获得积分10
1秒前
烂漫饼干完成签到,获得积分10
1秒前
Akim应助失眠小猫咪采纳,获得10
1秒前
JamesPei应助123采纳,获得10
1秒前
2秒前
曹煜晗发布了新的文献求助10
2秒前
2秒前
大模型应助召唤兽采纳,获得10
2秒前
2秒前
某某某完成签到,获得积分10
3秒前
桐桐应助李不开你采纳,获得10
4秒前
4秒前
cjy完成签到,获得积分10
4秒前
4秒前
英姑应助仗炮由纪采纳,获得10
4秒前
王大敏给王大敏的求助进行了留言
5秒前
mingxuan完成签到,获得积分10
5秒前
殷勤的咖啡完成签到,获得积分10
6秒前
希望天下0贩的0应助11采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
今后应助zhao采纳,获得10
6秒前
英俊的铭应助su采纳,获得10
7秒前
7秒前
8秒前
夏夜微凉完成签到,获得积分10
9秒前
9秒前
9秒前
花花发布了新的文献求助20
9秒前
攒星星完成签到,获得积分10
9秒前
sugarballer完成签到,获得积分10
9秒前
10秒前
齐小妮完成签到,获得积分20
10秒前
卡卡卡卡卡卡完成签到,获得积分10
11秒前
imemorizedpi完成签到,获得积分10
11秒前
dong发布了新的文献求助30
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559