How to review and assess a systematic review and meta-analysis article: a methodological study (secondary publication)

系统回顾 荟萃分析 漏斗图 独创性 计算机科学 出版偏见 梅德林 管理科学 数据科学 循证医学 心理学 医学 替代医学 病理 工程类 社会心理学 创造力 政治学 法学
作者
Seung‐Kwon Myung
出处
期刊:Journal of Educational Evaluation for Health Professions [Korea Health Insurance Licensing Examination Institute]
卷期号:20: 24-24 被引量:5
标识
DOI:10.3352/jeehp.2023.20.24
摘要

Systematic reviews and meta-analyses have become central in many research fields, particularly medicine. They offer the highest level of evidence in evidence-based medicine and support the development and revision of clinical practice guidelines, which offer recommendations for clinicians caring for patients with specific diseases and conditions. This review summarizes the concepts of systematic reviews and meta-analyses and provides guidance on reviewing and assessing such papers. A systematic review refers to a review of a research question that uses explicit and systematic methods to identify, select, and critically appraise relevant research. In contrast, a meta-analysis is a quantitative statistical analysis that combines individual results on the same research question to estimate the common or mean effect. Conducting a meta-analysis involves defining a research topic, selecting a study design, searching literature in electronic databases, selecting relevant studies, and conducting the analysis. One can assess the findings of a meta-analysis by interpreting a forest plot and a funnel plot and by examining heterogeneity. When reviewing systematic reviews and meta-analyses, several essential points must be considered, including the originality and significance of the work, the comprehensiveness of the database search, the selection of studies based on inclusion and exclusion criteria, subgroup analyses by various factors, and the interpretation of the results based on the levels of evidence. This review will provide readers with helpful guidance to help them read, understand, and evaluate these articles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逃跑的炸鸡完成签到 ,获得积分10
1秒前
arya完成签到 ,获得积分10
1秒前
猪肉水饺发布了新的文献求助10
2秒前
4秒前
传奇3应助小蒋采纳,获得10
4秒前
爱睡觉的森森完成签到,获得积分10
5秒前
7秒前
沉默的晓旋完成签到,获得积分10
9秒前
10秒前
10秒前
刘明生发布了新的文献求助30
10秒前
昏睡的蟠桃应助想美事采纳,获得30
10秒前
ting给ting的求助进行了留言
10秒前
晴空万里完成签到,获得积分10
11秒前
fjh应助zuoyou采纳,获得10
13秒前
淡定的凝琴完成签到,获得积分10
13秒前
14秒前
CATH发布了新的文献求助10
14秒前
刀客特liu完成签到,获得积分10
15秒前
keyaner发布了新的文献求助10
15秒前
所所应助刘明生采纳,获得10
15秒前
科目三应助点点采纳,获得10
16秒前
大树2.0发布了新的文献求助10
16秒前
16秒前
刀客特liu发布了新的文献求助10
18秒前
程宇发布了新的文献求助10
19秒前
已绕晕发布了新的文献求助10
21秒前
搜集达人应助陈陈采纳,获得10
21秒前
bl完成签到,获得积分20
22秒前
竹寺发布了新的文献求助10
22秒前
jagger完成签到,获得积分10
22秒前
22秒前
斯文败类应助6789采纳,获得10
23秒前
24秒前
淳于碧空发布了新的文献求助10
29秒前
Hang发布了新的文献求助30
30秒前
打打应助You采纳,获得10
30秒前
点点完成签到,获得积分20
30秒前
32秒前
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734585
求助须知:如何正确求助?哪些是违规求助? 3278533
关于积分的说明 10009882
捐赠科研通 2995161
什么是DOI,文献DOI怎么找? 1643223
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196