An exploratory analysis of two-vehicle crashes for distracted driving with a mixed approach: Machine learning algorithm with unobserved heterogeneity

分心驾驶 撞车 攻击性驾驶 毒物控制 速度限制 执法 人为因素与人体工程学 执行 运输工程 伤害预防 工程类 人口统计学的 逻辑回归 计算机科学 机器学习 人口学 环境卫生 医学 政治学 法学 程序设计语言 社会学
作者
Mouyid Islam,Deep Patel,Ahmed Sajid Hasan,Mohammad Jalayer
出处
期刊:Journal of Transportation Safety & Security [Taylor & Francis]
卷期号:16 (7): 709-745 被引量:11
标识
DOI:10.1080/19439962.2023.2248035
摘要

AbstractTwo-vehicle crashes resulting from distracted driving led to a higher number of fatalities and serious injuries over time. This study utilized machine learning and econometric models to investigate two-vehicle-involved distracted driving crashes from the Crash Report Sampling System within the United States. XGBoost and Random Forest were utilized to identify the top variables based on SHAP value, although mixed logit with unobserved heterogeneity was used to model injury severity. The model results indicate that there is a complex interaction of driver characteristics, such as demographics (male drivers), driver actions (careless driving, driving more than the speed limit of more than 15 mph, hitting a stopped vehicle), a driver without violation history, turning violation, drinking, roadway characteristics (non-interstate highways, undivided and divided roadways with positive barrier, curved roadways, dry surface), environmental conditions (rainy weather), vehicle attributes (motorcycle, displacement volume up to 2500 cc, newer vehicle within five years of crash-involvement), temporal characteristics (4–6 PM, July–September, and year 2017). These findings underscore the importance of driving behavior and roadway design. As such, prioritizing efforts to address distracted driving behavior through driver training and law enforcement, as well as considering its implications for roadway design and maintenance, becomes crucial.Keywords: machine learningunobserved heterogeneityinjury severitymultivehicle crashesmixed logit modelCRSS Correction StatementThis article has been corrected with minor changes. These changes do not impact the academic content of the article.Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 See more details in comparative injury severity analysis in Islam and Mannering (Citation2020) on aggressive and non-aggressive driving, Islam et al. (Citation2022) on straight and curved segments, and Islam (Citation2022b) on work-zone and non-work-zone involving large trucks.2 Temporal instability was not considered within the scope of this study, as the primary focus here is on developing an empirical framework to integrate machine learning and econometric modeling.3 The CRSS is a weighted sample of police-reported motor vehicle crashes in the United States from 2016 through 2020. The General Estimates System (GES) of the National Highway Traffic Safety Administration was superseded by this data set. The CRSS data is a national sample drawn from the nearly six million crashes documented by police each year. The CRSS sampling system records all types of crashes, from minor to fatal.4 The extensive discussions and justifications for accounting for unobserved heterogeneity in the crash data modeling are highlighted in a study by Mannering et al. (Citation2016). Considering the paradigm shift from the other traditional models, if unobserved heterogeneity is ignored, and the effects of observable variables is restricted to be the same across all observations, the model will be mis-specified and the estimated parameters will, in general, be biased and inefficient, which could in turn lead to erroneous inferences and predictions.5 Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, North Dakota, South Dakota, Nebraska, Iowa, Missouri, Kansas in the Midwest (Region 2) per CRSS user manual.6 Maryland, Delaware, Washington DC., West Virginia, Virginia, Kentucky, Tennessee, North Carolina, South Caroline, Georgia, Florida, Alabama, Mississippi, Louisiana, Arkansas, Oklahoma, and Texas in the South (Region 3) per CRSS user manual.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星星完成签到 ,获得积分10
刚刚
1秒前
医路潜行发布了新的文献求助10
3秒前
4秒前
小沫完成签到,获得积分10
4秒前
AAAsun完成签到,获得积分10
4秒前
cc完成签到 ,获得积分10
5秒前
灵均发布了新的文献求助10
5秒前
黄凯完成签到,获得积分10
6秒前
6秒前
xlbn完成签到,获得积分10
6秒前
mx应助医路潜行采纳,获得10
8秒前
zac完成签到,获得积分10
9秒前
10秒前
共享精神应助嬉笑采纳,获得10
11秒前
阳光下的向日葵完成签到,获得积分10
12秒前
多多发布了新的文献求助20
13秒前
13秒前
14秒前
美好焦发布了新的文献求助10
14秒前
SYLH应助zac采纳,获得10
15秒前
星辰大海应助MR_Z采纳,获得10
15秒前
水心完成签到 ,获得积分10
16秒前
无私的芹应助deng203采纳,获得10
16秒前
完美硬币完成签到,获得积分10
18秒前
CipherSage应助瘦瘦的斑马采纳,获得10
18秒前
小蘑菇应助直率的问筠采纳,获得10
20秒前
20秒前
今后应助YZYXR采纳,获得10
21秒前
单纯热狗完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
nono完成签到,获得积分10
25秒前
25秒前
小火苗发布了新的文献求助10
26秒前
MR_Z发布了新的文献求助10
26秒前
wsazah完成签到,获得积分10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952669
求助须知:如何正确求助?哪些是违规求助? 3498162
关于积分的说明 11090517
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349