已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An exploratory analysis of two-vehicle crashes for distracted driving with a mixed approach: Machine learning algorithm with unobserved heterogeneity

分心驾驶 撞车 攻击性驾驶 毒物控制 速度限制 执法 人为因素与人体工程学 执行 运输工程 伤害预防 工程类 人口统计学的 逻辑回归 计算机科学 机器学习 人口学 环境卫生 医学 社会学 法学 政治学 程序设计语言
作者
Mouyid Islam,Deep Patel,Ahmed Sajid Hasan,Mohammad Jalayer
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:: 1-37 被引量:4
标识
DOI:10.1080/19439962.2023.2248035
摘要

AbstractTwo-vehicle crashes resulting from distracted driving led to a higher number of fatalities and serious injuries over time. This study utilized machine learning and econometric models to investigate two-vehicle-involved distracted driving crashes from the Crash Report Sampling System within the United States. XGBoost and Random Forest were utilized to identify the top variables based on SHAP value, although mixed logit with unobserved heterogeneity was used to model injury severity. The model results indicate that there is a complex interaction of driver characteristics, such as demographics (male drivers), driver actions (careless driving, driving more than the speed limit of more than 15 mph, hitting a stopped vehicle), a driver without violation history, turning violation, drinking, roadway characteristics (non-interstate highways, undivided and divided roadways with positive barrier, curved roadways, dry surface), environmental conditions (rainy weather), vehicle attributes (motorcycle, displacement volume up to 2500 cc, newer vehicle within five years of crash-involvement), temporal characteristics (4–6 PM, July–September, and year 2017). These findings underscore the importance of driving behavior and roadway design. As such, prioritizing efforts to address distracted driving behavior through driver training and law enforcement, as well as considering its implications for roadway design and maintenance, becomes crucial.Keywords: machine learningunobserved heterogeneityinjury severitymultivehicle crashesmixed logit modelCRSS Correction StatementThis article has been corrected with minor changes. These changes do not impact the academic content of the article.Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 See more details in comparative injury severity analysis in Islam and Mannering (Citation2020) on aggressive and non-aggressive driving, Islam et al. (Citation2022) on straight and curved segments, and Islam (Citation2022b) on work-zone and non-work-zone involving large trucks.2 Temporal instability was not considered within the scope of this study, as the primary focus here is on developing an empirical framework to integrate machine learning and econometric modeling.3 The CRSS is a weighted sample of police-reported motor vehicle crashes in the United States from 2016 through 2020. The General Estimates System (GES) of the National Highway Traffic Safety Administration was superseded by this data set. The CRSS data is a national sample drawn from the nearly six million crashes documented by police each year. The CRSS sampling system records all types of crashes, from minor to fatal.4 The extensive discussions and justifications for accounting for unobserved heterogeneity in the crash data modeling are highlighted in a study by Mannering et al. (Citation2016). Considering the paradigm shift from the other traditional models, if unobserved heterogeneity is ignored, and the effects of observable variables is restricted to be the same across all observations, the model will be mis-specified and the estimated parameters will, in general, be biased and inefficient, which could in turn lead to erroneous inferences and predictions.5 Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, North Dakota, South Dakota, Nebraska, Iowa, Missouri, Kansas in the Midwest (Region 2) per CRSS user manual.6 Maryland, Delaware, Washington DC., West Virginia, Virginia, Kentucky, Tennessee, North Carolina, South Caroline, Georgia, Florida, Alabama, Mississippi, Louisiana, Arkansas, Oklahoma, and Texas in the South (Region 3) per CRSS user manual.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
txxxx完成签到,获得积分10
3秒前
5秒前
科研通AI2S应助txxxx采纳,获得10
8秒前
无奈秋荷发布了新的文献求助10
10秒前
11秒前
xuanxuan发布了新的文献求助10
14秒前
酷波er应助A宇采纳,获得10
19秒前
老六完成签到 ,获得积分10
20秒前
枫叶-ZqqC完成签到,获得积分0
24秒前
天丶灵灵发布了新的文献求助10
26秒前
神无完成签到 ,获得积分10
26秒前
爱科研的小周完成签到 ,获得积分10
26秒前
zhangqin完成签到 ,获得积分10
27秒前
Ava应助枫叶-ZqqC采纳,获得10
27秒前
落后从阳完成签到 ,获得积分10
28秒前
穆紫应助kelvin采纳,获得10
29秒前
巫马小霜完成签到,获得积分10
29秒前
科研通AI2S应助apollo3232采纳,获得10
32秒前
佐zzz完成签到 ,获得积分10
35秒前
科研通AI2S应助maoer采纳,获得10
38秒前
38秒前
今后应助零零采纳,获得10
39秒前
调皮千兰完成签到,获得积分10
39秒前
赵安安完成签到,获得积分20
39秒前
Zer完成签到,获得积分10
39秒前
42秒前
48秒前
侠客完成签到 ,获得积分10
51秒前
專注完美近乎苛求完成签到 ,获得积分10
51秒前
零零发布了新的文献求助10
54秒前
maher完成签到,获得积分10
55秒前
兜里没糖了完成签到 ,获得积分10
57秒前
结实的涵柏完成签到 ,获得积分10
57秒前
cherry完成签到 ,获得积分10
57秒前
Pearl完成签到,获得积分10
57秒前
59秒前
kouryoufu完成签到,获得积分10
59秒前
1分钟前
1分钟前
Jiayi完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125899
求助须知:如何正确求助?哪些是违规求助? 2776224
关于积分的说明 7729457
捐赠科研通 2431591
什么是DOI,文献DOI怎么找? 1292142
科研通“疑难数据库(出版商)”最低求助积分说明 622497
版权声明 600392