Enhancing Malware Classification with Vision Transformers: A Comparative Study with Traditional CNN Models

计算机科学 可解释性 人工智能 可扩展性 机器学习 卷积神经网络 稳健性(进化) 深度学习 恶意软件 变压器 数据库 基因 操作系统 物理 量子力学 电压 化学 生物化学
作者
Ikram Ben Abdel Ouahab,Lotfi Elaachak,Mohammed Bouhorma
标识
DOI:10.1145/3607720.3607781
摘要

Malware classification is an important task in cybersecurity, where machine learning techniques have been widely used to automate the process of identifying and categorizing malicious software. In this paper, we propose a new approach to malware classification using Vision Transformers (ViT), a state-of-the-art deep learning architecture that has shown good results in computer vision field. Our proposed ViT-based model outperforms traditional Convolutional Neural Networks (CNNs) in terms of accuracy and robustness, as it can capture long-range dependencies in the input data without relying on hand-crafted features. We evaluate our proposed model on Malimg database, and demonstrate that it achieves state-of-the-art performance, outperforming the existing traditional approaches. Furthermore, we investigate the impact of different input representations, model configurations, and training strategies on the ViT-based model's performance. Our results show that the proposed ViT-based model offers several advantages over traditional CNN models, such as better performance on large-scale and complex datasets, higher interpretability, and scalability. However, the ViT-based model requires significantly more computational resources and longer training time. Our proposed approach offers a promising direction for malware classification using ViT-based models, which can be further improved by exploring different architectures, optimization techniques, and transfer learning strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lynn_zhang发布了新的文献求助10
1秒前
2秒前
xh发布了新的文献求助10
2秒前
所所应助luoshi采纳,获得10
2秒前
飞龙在天完成签到 ,获得积分10
2秒前
深爱不疑完成签到,获得积分10
3秒前
知识四面八方来完成签到 ,获得积分10
3秒前
我就是我完成签到,获得积分10
3秒前
3秒前
3秒前
heart完成签到,获得积分10
3秒前
keroro发布了新的文献求助10
4秒前
5秒前
pzc发布了新的文献求助10
5秒前
深爱不疑发布了新的文献求助10
6秒前
jennie完成签到 ,获得积分10
6秒前
徐徐发布了新的文献求助80
6秒前
不信慕斯完成签到,获得积分10
6秒前
Jokeypu完成签到,获得积分10
6秒前
gnr2000发布了新的文献求助30
7秒前
7秒前
song99完成签到,获得积分10
7秒前
清醒的ZY发布了新的文献求助50
7秒前
二小发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
澹台灭明发布了新的文献求助10
8秒前
8秒前
bkagyin应助AteeqBaloch采纳,获得10
9秒前
二二二发布了新的文献求助10
9秒前
万能图书馆应助LIU采纳,获得10
9秒前
绿麦盲区发布了新的文献求助10
9秒前
FIGGIEKIO完成签到,获得积分10
9秒前
星星发布了新的文献求助10
9秒前
852应助luoshi采纳,获得10
10秒前
小王发布了新的文献求助10
10秒前
hahah完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762