Enhancing Malware Classification with Vision Transformers: A Comparative Study with Traditional CNN Models

计算机科学 可解释性 人工智能 可扩展性 机器学习 卷积神经网络 稳健性(进化) 深度学习 恶意软件 变压器 数据库 生物化学 化学 物理 量子力学 电压 基因 操作系统
作者
Ikram Ben Abdel Ouahab,Lotfi Elaachak,Mohammed Bouhorma
标识
DOI:10.1145/3607720.3607781
摘要

Malware classification is an important task in cybersecurity, where machine learning techniques have been widely used to automate the process of identifying and categorizing malicious software. In this paper, we propose a new approach to malware classification using Vision Transformers (ViT), a state-of-the-art deep learning architecture that has shown good results in computer vision field. Our proposed ViT-based model outperforms traditional Convolutional Neural Networks (CNNs) in terms of accuracy and robustness, as it can capture long-range dependencies in the input data without relying on hand-crafted features. We evaluate our proposed model on Malimg database, and demonstrate that it achieves state-of-the-art performance, outperforming the existing traditional approaches. Furthermore, we investigate the impact of different input representations, model configurations, and training strategies on the ViT-based model's performance. Our results show that the proposed ViT-based model offers several advantages over traditional CNN models, such as better performance on large-scale and complex datasets, higher interpretability, and scalability. However, the ViT-based model requires significantly more computational resources and longer training time. Our proposed approach offers a promising direction for malware classification using ViT-based models, which can be further improved by exploring different architectures, optimization techniques, and transfer learning strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lengchitu发布了新的文献求助10
刚刚
1秒前
1秒前
penny完成签到,获得积分10
2秒前
3秒前
禹冷玉完成签到,获得积分10
3秒前
5秒前
Jasper应助江逾白采纳,获得10
5秒前
bkagyin应助Hexagram采纳,获得10
5秒前
千崧发布了新的文献求助10
6秒前
行毅文发布了新的文献求助10
6秒前
斯文败类应助penny采纳,获得10
6秒前
木木三发布了新的文献求助10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
黄景滨发布了新的文献求助10
7秒前
小明应助科研通管家采纳,获得10
7秒前
点点完成签到,获得积分10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
追风少年应助科研通管家采纳,获得150
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得80
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
鬼笔环肽应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
糖小白发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5171876
求助须知:如何正确求助?哪些是违规求助? 4362262
关于积分的说明 13582870
捐赠科研通 4209918
什么是DOI,文献DOI怎么找? 2309059
邀请新用户注册赠送积分活动 1308259
关于科研通互助平台的介绍 1255266