亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Background Filtering Method for Roadside LiDARs

激光雷达 计算机科学 点云 背景(考古学) 八叉树 计算机视觉 人工智能 数据挖掘 实时计算 遥感 地理 考古
作者
Zhongling Su,Peng Cao,Xiaobo Liu,Yandong Tang,Fei Chen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jsen.2023.3331120
摘要

In the context of connected and automated transportation systems, LiDARs are increasingly being deployed on the roadside to detect detailed motions of road users (i.e., vehicles and pedestrians) for real-time applications. To provide real-time detection, it is essential to conduct background filtering of the LiDAR point cloud to eliminate LiDAR points irrelevant to the traffic objects. Background filtering can significantly reduce the computational load of implementing a traffic-detection algorithm. However, existing methods are not sufficiently fast and accurate for real-time applications. This study proposes an efficient method of background filtering method for roadside LiDAR data by solving the problems of existing methods in the background filtering procedure. In the proposed method, the octree is used to aggregate LiDAR frames, which can dramatically reduce storage space compared to simply superposing frames in existing studies. Second, by integrating ray-casting and occupancy ratio, the background can be extracted according to the spatial relations and statistical probabilities of objects. In the final stage, a sparse voxel octree is applied to represent the background, and a GPU-based parallel filtering algorithm can expedite background filtering significantly. We conducted a field experiment to collect LiDAR data using various LiDARs installed at the roadside of a freeway segment in Chengdu City, China. The results demonstrate that the proposed method performs best in terms of accuracy and computation speed in a comparison experiment. Its performance can remain robust with various types of LiDARs under various traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
29秒前
41秒前
清脆如娆完成签到 ,获得积分10
55秒前
55秒前
宝字盖发布了新的文献求助10
59秒前
1分钟前
2分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
浠苒发布了新的文献求助10
3分钟前
童念之发布了新的文献求助10
3分钟前
4分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
6分钟前
szcyxzh完成签到,获得积分20
6分钟前
小马甲应助悦耳的之瑶采纳,获得10
6分钟前
香蕉觅云应助少年故事采纳,获得10
7分钟前
研友_892kOL完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
陈龙艳发布了新的文献求助10
8分钟前
顺顺完成签到 ,获得积分20
8分钟前
8分钟前
8分钟前
成社长发布了新的文献求助10
8分钟前
浠苒发布了新的文献求助10
8分钟前
cc完成签到,获得积分10
9分钟前
深情安青应助科研通管家采纳,获得10
9分钟前
小泉应助童念之采纳,获得10
10分钟前
领导范儿应助童念之采纳,获得10
10分钟前
11分钟前
陈龙艳发布了新的文献求助10
11分钟前
陈龙艳完成签到,获得积分10
11分钟前
Krim完成签到 ,获得积分10
11分钟前
冬去春来完成签到 ,获得积分10
11分钟前
科研通AI5应助科研通管家采纳,获得10
11分钟前
苗条绝义发布了新的文献求助30
12分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878