Carbon emission analysis of precast concrete building Construction: A study on component transportation phase using Artificial Neural Network

温室气体 预制混凝土 交通运输业 环境科学 还原(数学) 碳纤维 人工神经网络 运输工程 计算机科学 工程类 土木工程 生态学 数学 几何学 算法 复合数 生物 机器学习
作者
Wang Hai-ning,Liang Zhao,Hong Zhang,Yuchong Qian,Yiming Xiang,Zhixing Luo,Zixiao Wang
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:301: 113708-113708 被引量:8
标识
DOI:10.1016/j.enbuild.2023.113708
摘要

Off-site construction has been widely adopted for its carbon reduction potential. However, the emissions from its transportation stage are not fully explored. Given the rising prominence of Battery Electric Vehicles (BEVs), this study explores their potential carbon reduction benefits during the transportation of prefabricated components by comparing emissions from Fossil Vehicles (FVs) and BEVs. An Artificial-Neural-Network-based emission model is developed to estimate the carbon emissions of both vehicle types. Specifically, the model collects the real-time carbon emission dynamics across varying external conditions, encompassing diverse transportation constraints, vehicle operational statuses, and road conditions. By employing a supervised learning framework, the transportation carbon emission coefficient of prefabricated components is determined. Comparative analysis reveals that BEVs consistently outperforms FVs, achieving a peak reduction rate of 47.76%. The negative correlation between the reduction rate of BEVs and factors like average speed and load rate underscores BEVs' advantage in urban transportation scenarios, where these factors tend to be low. Hence, the integration of BEVs in the transportation of prefabricated components is advocated. This study provides robust carbon emissions coefficients for BEVs in the transportation of prefabricated components, filling the gap in current estimation methods. These coefficients present a valuable tool for researchers, aiding in the accurate estimation of transportation carbon emissions and fostering the conceptualization of innovative carbon reduction tactics through BEV adoption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jasper应助arrebol采纳,获得10
3秒前
3秒前
小馒头发布了新的文献求助10
5秒前
washy完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
两袖清风发布了新的文献求助10
6秒前
追寻白云发布了新的文献求助10
9秒前
9秒前
沟通亿心发布了新的文献求助10
11秒前
思维隋发布了新的文献求助10
12秒前
在水一方应助阿秋采纳,获得30
13秒前
追寻白云完成签到,获得积分20
16秒前
小馒头完成签到,获得积分10
17秒前
19秒前
MUAN完成签到 ,获得积分10
19秒前
嘻哈发布了新的文献求助10
20秒前
小二郎应助明天见采纳,获得10
22秒前
完美世界应助点墨采纳,获得10
22秒前
婷婷完成签到,获得积分10
23秒前
惟依发布了新的文献求助10
23秒前
23秒前
77发布了新的文献求助10
24秒前
希721完成签到 ,获得积分10
24秒前
syvshc完成签到,获得积分0
25秒前
JeromineJade发布了新的文献求助10
25秒前
susu完成签到,获得积分20
26秒前
危机的依凝完成签到 ,获得积分10
28秒前
Ray完成签到,获得积分10
29秒前
大模型应助Xin采纳,获得10
30秒前
31秒前
千江月完成签到,获得积分10
32秒前
小二郎应助嘻哈采纳,获得10
33秒前
CodeCraft应助科多兽骑士采纳,获得10
33秒前
欣慰外套完成签到 ,获得积分10
34秒前
34秒前
烟花应助77采纳,获得10
37秒前
wen_xxx发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629