A time-bounded approach for reducing runtime of well placement optimization using PSO and PSOGA algorithms

粒子群优化 数学优化 计算机科学 算法 人口 还原(数学) 收敛速度 趋同(经济学) 数学 人口学 几何学 社会学 计算机网络 频道(广播) 经济 经济增长
作者
Mojtaba Asadian-Pakfar,Behnam Sedaee,Ali Nakhaee
标识
DOI:10.1016/j.geoen.2023.212391
摘要

Determining the optimal drilling locations and well production/injection rates is a highly complex decision in reservoir development. The present study aims to optimize well placement and production/injection rates through the application of intelligent search algorithms. The Particle Swarm Optimization (PSO) and combined Particle Swarm Optimization-Genetic Algorithm (PSOGA) have been chosen as the optimal means to achieve this objective. The Net Present Value (NPV) of the project serves as the objective function, with decision variables including the location of wells, perforation, and flow rates. To evaluate the performance of the algorithms in optimizing well placement and flow rates, a heterogeneous reservoir model has been used. In order to reduce optimization runtime, a novel method has been presented. This method involves changing the termination condition, such that the entire optimization time is considered rather than the maximum iterations. The population size can be added to enhance algorithm convergence. Thus, modified algorithms, namely TPSO and TPSO-GA, have been introduced. The results of determining the termination condition on the TPSO-GA algorithm are quite promising. By setting a 24-h termination condition or a 70% reduction in the basic runtime, and with a population size of 30 agents, the same values of the objective function can be obtained. Furthermore, the impact of two parameters within the objective function, namely the oil price and discount rate, has also been explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的仙人掌完成签到,获得积分10
3秒前
轻松的剑完成签到,获得积分10
4秒前
5秒前
852应助WIN1016采纳,获得10
6秒前
遗梦梦完成签到 ,获得积分10
6秒前
汉堡包应助zhan采纳,获得10
7秒前
YYY完成签到,获得积分10
7秒前
8秒前
9秒前
Betty完成签到,获得积分10
10秒前
一颗大树完成签到,获得积分10
11秒前
11秒前
11秒前
Singularity应助yuaasusanaann采纳,获得10
12秒前
14秒前
健忘的蓉完成签到 ,获得积分10
17秒前
面包先生发布了新的文献求助10
17秒前
CodeCraft应助33采纳,获得10
17秒前
攀攀发布了新的文献求助10
18秒前
大模型应助dudu采纳,获得10
20秒前
21秒前
研友_VZG7GZ应助wodel采纳,获得10
21秒前
yiling发布了新的文献求助10
21秒前
25秒前
小脑斧完成签到,获得积分10
25秒前
yin完成签到,获得积分20
26秒前
Ki_Ayasato发布了新的文献求助30
27秒前
虚幻的茗发布了新的文献求助10
27秒前
重要的奇异果完成签到,获得积分20
27秒前
27秒前
28秒前
朴实剑通完成签到,获得积分10
29秒前
过pass完成签到,获得积分10
29秒前
30秒前
论文侠完成签到,获得积分10
30秒前
30秒前
30秒前
燕子发布了新的文献求助10
31秒前
攀攀完成签到,获得积分10
32秒前
曾建发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511902
关于积分的说明 11160537
捐赠科研通 3246634
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804403