A lightweight IoT intrusion detection model based on improved BERT-of-Theseus

计算机科学 入侵检测系统 物联网 软件部署 人工智能 网络安全 深度学习 机器学习 数据挖掘 计算机安全 操作系统
作者
Zhendong Wang,Jingfei Li,Shuxin Yang,Xiao Luo,Dahai Li,Soroosh Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122045-122045 被引量:27
标识
DOI:10.1016/j.eswa.2023.122045
摘要

The proliferation of Internet of Things (IoT) technology has resulted in an increase in security vulnerabilities associated with the interconnectivity of IoT devices. As a result, there is a need for intrusion detection mechanisms that can effectively detect attacks on IoT security vulnerabilities. However, due to the resource constraints of IoT deployment devices, intrusion detection schemes must be customized to meet the specific demands of the IoT environment. In this study, we propose a knowledge-distillation-based IoT intrusion detection model named BT-TPF, which is capable of detecting network attacks encountered by IoT devices in an IoT environment with limited computing resources. The proposed BT-TPF model leverages a Siamese network for feature dimensionality reduction of complex high-dimensional network traffic data. Additionally, it employs a large-scale Vision Transformer as a teacher model to guide a small-scale Poolformer model during training, before deploying the trained Poolformer model as a classifier to detect network intrusion traffic. Through knowledge distillation, the final small model obtained in this paper only requires a minimum of 788 parameters, reducing the number of parameters by approximately 90% compared to the large model before knowledge distillation, while maintaining high detection accuracy. Experimental results show that the BT-TPF model achieves over 99% accuracy on both the CIC-IDS2017 and TON_IoT datasets. Furthermore, it exhibits significant advantages compared to traditional Deep Learning methods and recent state-of-the-art models, as evidenced by various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu1109发布了新的文献求助10
刚刚
无语的钢铁侠完成签到,获得积分10
刚刚
bc完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
GQ完成签到,获得积分10
1秒前
1秒前
任性迎南发布了新的文献求助50
2秒前
2秒前
Ahion完成签到,获得积分10
3秒前
薄荷味的猫完成签到,获得积分10
3秒前
4秒前
魔幻的雍完成签到,获得积分10
4秒前
Samuel_完成签到,获得积分10
4秒前
hangfengzi完成签到,获得积分10
5秒前
kimmie完成签到,获得积分10
5秒前
shone完成签到,获得积分10
5秒前
monets完成签到 ,获得积分10
6秒前
仁爱钢笔发布了新的文献求助10
6秒前
青阳完成签到,获得积分10
6秒前
雨中客完成签到,获得积分10
6秒前
郭志倩发布了新的文献求助10
7秒前
Ahion发布了新的文献求助10
7秒前
7秒前
无昵称发布了新的文献求助10
8秒前
任性迎南完成签到,获得积分10
8秒前
iNk应助Lifetour采纳,获得10
8秒前
9秒前
9秒前
Gu0F1完成签到 ,获得积分10
9秒前
9秒前
在水一方应助小米的稻田采纳,获得10
9秒前
Owen应助zhangsudi采纳,获得10
9秒前
糖炒栗子完成签到,获得积分10
9秒前
10秒前
墨酒子完成签到,获得积分10
10秒前
hangfengzi发布了新的文献求助20
10秒前
10秒前
端庄风完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968964
求助须知:如何正确求助?哪些是违规求助? 3513877
关于积分的说明 11170569
捐赠科研通 3249201
什么是DOI,文献DOI怎么找? 1794692
邀请新用户注册赠送积分活动 875297
科研通“疑难数据库(出版商)”最低求助积分说明 804755