已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A lightweight IoT intrusion detection model based on improved BERT-of-Theseus

计算机科学 入侵检测系统 物联网 软件部署 人工智能 网络安全 深度学习 机器学习 数据挖掘 计算机安全 操作系统
作者
Zhendong Wang,Jingfei Li,Shuxin Yang,Xiao Luo,Dahai Li,Soroosh Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122045-122045 被引量:27
标识
DOI:10.1016/j.eswa.2023.122045
摘要

The proliferation of Internet of Things (IoT) technology has resulted in an increase in security vulnerabilities associated with the interconnectivity of IoT devices. As a result, there is a need for intrusion detection mechanisms that can effectively detect attacks on IoT security vulnerabilities. However, due to the resource constraints of IoT deployment devices, intrusion detection schemes must be customized to meet the specific demands of the IoT environment. In this study, we propose a knowledge-distillation-based IoT intrusion detection model named BT-TPF, which is capable of detecting network attacks encountered by IoT devices in an IoT environment with limited computing resources. The proposed BT-TPF model leverages a Siamese network for feature dimensionality reduction of complex high-dimensional network traffic data. Additionally, it employs a large-scale Vision Transformer as a teacher model to guide a small-scale Poolformer model during training, before deploying the trained Poolformer model as a classifier to detect network intrusion traffic. Through knowledge distillation, the final small model obtained in this paper only requires a minimum of 788 parameters, reducing the number of parameters by approximately 90% compared to the large model before knowledge distillation, while maintaining high detection accuracy. Experimental results show that the BT-TPF model achieves over 99% accuracy on both the CIC-IDS2017 and TON_IoT datasets. Furthermore, it exhibits significant advantages compared to traditional Deep Learning methods and recent state-of-the-art models, as evidenced by various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川完成签到 ,获得积分10
3秒前
李金文应助榨菜采纳,获得50
4秒前
Orange应助曹能豪采纳,获得10
6秒前
cjh完成签到,获得积分10
6秒前
7秒前
yu完成签到 ,获得积分10
11秒前
13秒前
符聪完成签到 ,获得积分10
16秒前
周周粥完成签到 ,获得积分10
17秒前
曹能豪发布了新的文献求助10
17秒前
19秒前
23秒前
luxiaoyu发布了新的文献求助10
24秒前
科研通AI2S应助蓝精灵de你采纳,获得10
25秒前
cheng完成签到 ,获得积分10
25秒前
25秒前
战神林北发布了新的文献求助10
26秒前
春天的粥完成签到 ,获得积分10
28秒前
DZ发布了新的文献求助10
32秒前
李金文应助榨菜采纳,获得50
33秒前
锦城纯契完成签到 ,获得积分10
34秒前
36秒前
1l发布了新的文献求助10
37秒前
可爱的函函应助DZ采纳,获得10
38秒前
39秒前
39秒前
42秒前
xtt121应助冷静新烟采纳,获得10
43秒前
科研通AI6应助siwen采纳,获得10
43秒前
科研通AI6应助luxiaoyu采纳,获得10
45秒前
Dean完成签到,获得积分10
47秒前
49秒前
可久斯基完成签到 ,获得积分10
50秒前
NexusExplorer应助哭泣的犀牛采纳,获得10
53秒前
oleskarabach完成签到,获得积分20
54秒前
54秒前
Dean发布了新的文献求助10
54秒前
李健应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Virtual应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581377
求助须知:如何正确求助?哪些是违规求助? 3999340
关于积分的说明 12381148
捐赠科研通 3673945
什么是DOI,文献DOI怎么找? 2024819
邀请新用户注册赠送积分活动 1058589
科研通“疑难数据库(出版商)”最低求助积分说明 945318