A lightweight IoT intrusion detection model based on improved BERT-of-Theseus

计算机科学 入侵检测系统 物联网 软件部署 人工智能 网络安全 深度学习 机器学习 数据挖掘 计算机安全 操作系统
作者
Zhendong Wang,Jingfei Li,Shuxin Yang,Xiao Luo,Dahai Li,Soroosh Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122045-122045 被引量:27
标识
DOI:10.1016/j.eswa.2023.122045
摘要

The proliferation of Internet of Things (IoT) technology has resulted in an increase in security vulnerabilities associated with the interconnectivity of IoT devices. As a result, there is a need for intrusion detection mechanisms that can effectively detect attacks on IoT security vulnerabilities. However, due to the resource constraints of IoT deployment devices, intrusion detection schemes must be customized to meet the specific demands of the IoT environment. In this study, we propose a knowledge-distillation-based IoT intrusion detection model named BT-TPF, which is capable of detecting network attacks encountered by IoT devices in an IoT environment with limited computing resources. The proposed BT-TPF model leverages a Siamese network for feature dimensionality reduction of complex high-dimensional network traffic data. Additionally, it employs a large-scale Vision Transformer as a teacher model to guide a small-scale Poolformer model during training, before deploying the trained Poolformer model as a classifier to detect network intrusion traffic. Through knowledge distillation, the final small model obtained in this paper only requires a minimum of 788 parameters, reducing the number of parameters by approximately 90% compared to the large model before knowledge distillation, while maintaining high detection accuracy. Experimental results show that the BT-TPF model achieves over 99% accuracy on both the CIC-IDS2017 and TON_IoT datasets. Furthermore, it exhibits significant advantages compared to traditional Deep Learning methods and recent state-of-the-art models, as evidenced by various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyby发布了新的文献求助10
刚刚
FashionBoy应助xdc采纳,获得10
5秒前
杨召完成签到,获得积分10
10秒前
大橙子发布了新的文献求助10
14秒前
酷波er应助陈昊采纳,获得10
18秒前
hcsdgf完成签到 ,获得积分10
20秒前
可取完成签到,获得积分10
21秒前
zss完成签到 ,获得积分10
21秒前
22秒前
heart完成签到 ,获得积分10
24秒前
25秒前
lingyu完成签到,获得积分10
26秒前
ym完成签到 ,获得积分10
27秒前
Masetti1完成签到 ,获得积分10
29秒前
jenny发布了新的文献求助10
30秒前
忧虑的静柏完成签到 ,获得积分10
31秒前
31秒前
强公子发布了新的文献求助10
35秒前
自由的远侵完成签到 ,获得积分10
43秒前
巧克力手印完成签到,获得积分10
44秒前
屈岂愈发布了新的文献求助10
44秒前
45秒前
大橙子发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
47秒前
jenny完成签到,获得积分10
48秒前
祁乐安完成签到,获得积分10
49秒前
naiyouqiu1989完成签到,获得积分10
50秒前
zjhzslq发布了新的文献求助10
51秒前
baoxiaozhai完成签到 ,获得积分10
52秒前
fy完成签到,获得积分10
53秒前
强公子完成签到,获得积分10
54秒前
1分钟前
song完成签到 ,获得积分10
1分钟前
怡然小蚂蚁完成签到 ,获得积分10
1分钟前
小橙子完成签到,获得积分10
1分钟前
SciGPT应助滴答采纳,获得10
1分钟前
大气白翠完成签到,获得积分10
1分钟前
确幸完成签到,获得积分10
1分钟前
zjhzslq完成签到,获得积分10
1分钟前
xdc发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022