A lightweight IoT intrusion detection model based on improved BERT-of-Theseus

计算机科学 入侵检测系统 物联网 软件部署 人工智能 网络安全 深度学习 机器学习 数据挖掘 计算机安全 操作系统
作者
Zhendong Wang,Jingfei Li,Shuxin Yang,Xiao Luo,Dahai Li,Soroosh Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122045-122045 被引量:27
标识
DOI:10.1016/j.eswa.2023.122045
摘要

The proliferation of Internet of Things (IoT) technology has resulted in an increase in security vulnerabilities associated with the interconnectivity of IoT devices. As a result, there is a need for intrusion detection mechanisms that can effectively detect attacks on IoT security vulnerabilities. However, due to the resource constraints of IoT deployment devices, intrusion detection schemes must be customized to meet the specific demands of the IoT environment. In this study, we propose a knowledge-distillation-based IoT intrusion detection model named BT-TPF, which is capable of detecting network attacks encountered by IoT devices in an IoT environment with limited computing resources. The proposed BT-TPF model leverages a Siamese network for feature dimensionality reduction of complex high-dimensional network traffic data. Additionally, it employs a large-scale Vision Transformer as a teacher model to guide a small-scale Poolformer model during training, before deploying the trained Poolformer model as a classifier to detect network intrusion traffic. Through knowledge distillation, the final small model obtained in this paper only requires a minimum of 788 parameters, reducing the number of parameters by approximately 90% compared to the large model before knowledge distillation, while maintaining high detection accuracy. Experimental results show that the BT-TPF model achieves over 99% accuracy on both the CIC-IDS2017 and TON_IoT datasets. Furthermore, it exhibits significant advantages compared to traditional Deep Learning methods and recent state-of-the-art models, as evidenced by various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
夏紫儿完成签到 ,获得积分10
4秒前
所所应助跳跃如豹采纳,获得10
4秒前
DENANANA关注了科研通微信公众号
5秒前
852应助亚李采纳,获得10
6秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
一个人战争完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
孙成成发布了新的文献求助10
18秒前
廖英健完成签到 ,获得积分10
19秒前
zmx123123完成签到,获得积分10
19秒前
ZZ发布了新的文献求助10
20秒前
20秒前
21秒前
yyao发布了新的文献求助30
21秒前
白潇潇发布了新的文献求助10
21秒前
Owen应助谨言采纳,获得10
22秒前
BDMAXPK发布了新的文献求助10
22秒前
23秒前
23秒前
大轩发布了新的文献求助10
23秒前
榜一大哥的负担完成签到 ,获得积分10
26秒前
科研通AI2S应助糖豆采纳,获得10
30秒前
30秒前
熱風完成签到 ,获得积分10
33秒前
柯一一应助Liucky采纳,获得10
33秒前
34秒前
科目三应助高跟鞋陈煋采纳,获得10
34秒前
彩色夜阑完成签到,获得积分10
34秒前
搜集达人应助果子采纳,获得10
34秒前
南天发布了新的文献求助30
35秒前
爆米花应助Mingtiaoxiyue采纳,获得30
35秒前
涛声依旧完成签到,获得积分10
37秒前
S.S.N完成签到 ,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357