Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat

生物 转录组 基因 赤霉素 花序梗(解剖学) 数量性状位点 油菜素甾醇 基因组 拟南芥 生长素 生物发生 遗传学 植物 基因表达 突变体
作者
Xingchen Kong,Fang Wang,Zhenyu Wang,Xiuhua Gao,Shuaifeng Geng,Zhongyin Deng,Shuang Zhang,Mingxue Fu,Dada Cui,Shaoshuai Liu,Yuqing Che,Ruyi Liao,Lingjie Yin,Peng Zhou,Ke Wang,Xingguo Ye,Dengcai Liu,Xiangdong Fu,Long Mao,Aili Li
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:21 (10): 1990-2001 被引量:15
标识
DOI:10.1111/pbi.14107
摘要

Summary Plant breeding is constrained by trade‐offs among different agronomic traits by the pleiotropic nature of many genes. Genes that contribute to two or more favourable traits with no penalty on yield are rarely reported, especially in wheat. Here, we describe the editing of a wheat auxin response factor TaARF12 by using CRISPR/Cas9 that rendered shorter plant height with larger spikes. Changes in plant architecture enhanced grain number per spike up to 14.7% with significantly higher thousand‐grain weight and up to 11.1% of yield increase under field trials. Weighted Gene Co‐Expression Network Analysis (WGCNA) of spatial–temporal transcriptome profiles revealed two hub genes: RhtL1 , a DELLA domain‐free Rht‐1 paralog, which was up‐regulated in peduncle, and TaNGR5 , an organ size regulator that was up‐regulated in rachis, in taarf12 plants. The up‐regulation of RhtL1 in peduncle suggested the repression of GA signalling, whereas up‐regulation of TaNGR5 in spike may promote GA response, a working model supported by differential expression patterns of GA biogenesis genes in the two tissues. Thus, TaARF12 complemented plant height reduction with larger spikes that gave higher grain yield. Manipulation of TaARF12 may represent a new strategy in trait pyramiding for yield improvement in wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hu发布了新的文献求助10
刚刚
刚刚
krkr完成签到,获得积分10
刚刚
勤奋夏兰完成签到,获得积分10
刚刚
1秒前
1秒前
852应助成就幻竹采纳,获得10
1秒前
Zilch完成签到 ,获得积分10
1秒前
友好的储发布了新的文献求助10
1秒前
1秒前
Hello应助自觉紫安采纳,获得10
1秒前
孙氏姑娘发布了新的文献求助10
2秒前
可爱的函函应助暴走诺亚采纳,获得10
2秒前
zlfan2197发布了新的文献求助10
2秒前
爆米花应助细腻的仙人掌采纳,获得10
2秒前
能干妙竹完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Akim应助科研小白采纳,获得10
4秒前
灿烂千阳发布了新的文献求助10
4秒前
英俊的铭应助冷静的依瑶采纳,获得10
4秒前
PANYIAO发布了新的文献求助10
4秒前
4秒前
上官若男应助llee2005采纳,获得100
4秒前
djsj留下了新的社区评论
4秒前
5秒前
文存完成签到,获得积分20
5秒前
千凡发布了新的文献求助10
5秒前
大力沛萍完成签到,获得积分10
5秒前
6秒前
港岛妹妹发布了新的文献求助10
6秒前
6秒前
GIN11发布了新的文献求助10
6秒前
尘闲完成签到,获得积分20
6秒前
ZZY完成签到,获得积分10
6秒前
6秒前
DAISHU完成签到,获得积分10
7秒前
LXF发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481440
求助须知:如何正确求助?哪些是违规求助? 3071576
关于积分的说明 9122712
捐赠科研通 2763320
什么是DOI,文献DOI怎么找? 1516389
邀请新用户注册赠送积分活动 701550
科研通“疑难数据库(出版商)”最低求助积分说明 700413