CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis

计算机科学 系列(地层学) 卷积(计算机科学) 时间序列 时间序列 人工智能 序列(生物学) 计量经济学 数学 应用数学 算法 人工神经网络 统计 地质学 古生物学 遗传学 生物
作者
Zhiqiang Zhang,Yuxuan Chen,Dandan Zhang,Yining Qian,Hongbing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16368-16382 被引量:24
标识
DOI:10.1109/tnnls.2023.3294064
摘要

Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time–frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining—in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining—this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient—the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静谷秋完成签到,获得积分10
刚刚
Ttttt发布了新的文献求助10
1秒前
传奇3应助姚序东采纳,获得10
1秒前
1秒前
Sy发布了新的文献求助10
1秒前
DingShicong完成签到 ,获得积分10
1秒前
2秒前
聂落雁发布了新的文献求助10
2秒前
陈木子发布了新的文献求助10
2秒前
2秒前
朱子完成签到,获得积分10
3秒前
豌豆米应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Rae完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
李庭福发布了新的文献求助10
4秒前
ZX801发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
帅气的绿凝完成签到,获得积分10
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
ouyang发布了新的文献求助10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
able应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得30
5秒前
852应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得30
6秒前
Kevin完成签到,获得积分10
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313