CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis

计算机科学 卷积(计算机科学) 数据挖掘 特征(语言学) 时间序列 背景(考古学) 单变量 频域 模式识别(心理学) 特征提取 时域 推论 瓶颈 人工智能 序列(生物学) 算法 人工神经网络 多元统计 机器学习 古生物学 语言学 哲学 遗传学 计算机视觉 生物 嵌入式系统
作者
Zhiqiang Zhang,Yuxuan Chen,Dandan Zhang,Yining Qian,Hongbing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:8
标识
DOI:10.1109/tnnls.2023.3294064
摘要

Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time-frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining-in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining-this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient-the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
易易完成签到,获得积分10
4秒前
4秒前
上官若男应助lishan采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
5秒前
可乐完成签到,获得积分20
5秒前
小田发布了新的文献求助10
6秒前
海子完成签到,获得积分10
7秒前
1640应助ark861023采纳,获得10
7秒前
caixia完成签到,获得积分10
7秒前
Able完成签到,获得积分10
11秒前
11秒前
11秒前
luo发布了新的文献求助10
12秒前
可乐发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
称心花卷完成签到,获得积分10
13秒前
13秒前
bkagyin应助talpionchen采纳,获得10
14秒前
joyce完成签到,获得积分10
15秒前
诸葛藏藏发布了新的文献求助10
16秒前
Wshtiiiii发布了新的文献求助10
17秒前
17秒前
哈哈哈发布了新的文献求助10
17秒前
shunshun51213完成签到,获得积分10
18秒前
汉堡包应助mystery采纳,获得10
18秒前
无限的海云完成签到,获得积分10
19秒前
体贴幼晴完成签到,获得积分20
19秒前
20秒前
寻道图强应助踏实的寒烟采纳,获得30
21秒前
22秒前
体贴幼晴发布了新的文献求助10
23秒前
ALDXL完成签到,获得积分10
23秒前
24秒前
海子发布了新的文献求助10
24秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870