CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis

计算机科学 系列(地层学) 卷积(计算机科学) 时间序列 时间序列 人工智能 序列(生物学) 计量经济学 数学 应用数学 算法 人工神经网络 统计 地质学 古生物学 遗传学 生物
作者
Zhiqiang Zhang,Yuxuan Chen,Dandan Zhang,Yining Qian,Hongbing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16368-16382 被引量:24
标识
DOI:10.1109/tnnls.2023.3294064
摘要

Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time–frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining—in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining—this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient—the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助光亮的念珍采纳,获得30
1秒前
英吉利25发布了新的文献求助10
1秒前
南城忆潇湘完成签到,获得积分10
1秒前
3秒前
所所应助Irene采纳,获得10
3秒前
wuwu完成签到,获得积分10
5秒前
雾醉舟完成签到,获得积分10
5秒前
花生糕完成签到,获得积分10
6秒前
小白鸽完成签到,获得积分10
6秒前
机灵纸鹤完成签到 ,获得积分10
6秒前
lake完成签到,获得积分10
6秒前
Hello应助受伤的安雁采纳,获得30
6秒前
Evan123完成签到,获得积分10
7秒前
闫什应助Flz采纳,获得10
7秒前
7秒前
xiaorui完成签到,获得积分10
7秒前
尊敬的寄松完成签到 ,获得积分10
9秒前
10秒前
云深不知处完成签到,获得积分10
10秒前
老迟到的小松鼠完成签到,获得积分10
11秒前
勤恳镜子完成签到,获得积分10
12秒前
开心的若烟完成签到,获得积分10
13秒前
爱上多hi完成签到,获得积分10
13秒前
ll发布了新的文献求助10
16秒前
16秒前
笨笨梦寒关注了科研通微信公众号
16秒前
MM完成签到,获得积分10
17秒前
煲煲煲仔饭完成签到 ,获得积分10
17秒前
煲煲煲仔饭完成签到 ,获得积分10
17秒前
火羊宝完成签到 ,获得积分10
17秒前
455完成签到,获得积分10
19秒前
cis2014完成签到,获得积分10
19秒前
嘻嘻完成签到,获得积分10
20秒前
athena完成签到,获得积分10
20秒前
十七完成签到 ,获得积分10
21秒前
Zz完成签到,获得积分10
21秒前
清淮完成签到 ,获得积分10
21秒前
小新小新发布了新的文献求助10
22秒前
amault完成签到,获得积分10
23秒前
马小燕完成签到,获得积分10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695