清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis

计算机科学 系列(地层学) 卷积(计算机科学) 时间序列 时间序列 人工智能 序列(生物学) 计量经济学 数学 应用数学 算法 人工神经网络 统计 地质学 古生物学 遗传学 生物
作者
Zhiqiang Zhang,Yuxuan Chen,Dandan Zhang,Yining Qian,Hongbing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16368-16382 被引量:24
标识
DOI:10.1109/tnnls.2023.3294064
摘要

Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time–frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining—in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining—this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient—the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
42秒前
张童鞋完成签到 ,获得积分10
51秒前
1分钟前
牛黄完成签到 ,获得积分10
2分钟前
Alisha完成签到,获得积分10
2分钟前
2分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
西西娃儿完成签到,获得积分10
2分钟前
西西娃儿发布了新的文献求助10
3分钟前
3分钟前
3分钟前
英俊的铭应助西西娃儿采纳,获得10
3分钟前
赘婿应助西西娃儿采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
4分钟前
今今完成签到,获得积分10
4分钟前
4分钟前
4分钟前
白天亮完成签到,获得积分10
5分钟前
方白秋完成签到,获得积分0
5分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
5分钟前
陈杰发布了新的文献求助10
5分钟前
人类后腿发布了新的文献求助10
6分钟前
6分钟前
poki完成签到 ,获得积分10
6分钟前
6分钟前
xmsyq完成签到 ,获得积分10
6分钟前
荣浩宇完成签到 ,获得积分10
6分钟前
6分钟前
林利芳完成签到 ,获得积分0
6分钟前
6分钟前
7分钟前
人类后腿完成签到,获得积分20
7分钟前
弹剑作歌完成签到,获得积分10
7分钟前
孙晓燕完成签到 ,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293034
求助须知:如何正确求助?哪些是违规求助? 4443373
关于积分的说明 13831112
捐赠科研通 4326905
什么是DOI,文献DOI怎么找? 2375159
邀请新用户注册赠送积分活动 1370514
关于科研通互助平台的介绍 1335179