CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis

计算机科学 系列(地层学) 卷积(计算机科学) 时间序列 时间序列 人工智能 序列(生物学) 计量经济学 数学 应用数学 算法 人工神经网络 统计 地质学 古生物学 遗传学 生物
作者
Zhiqiang Zhang,Yuxuan Chen,Dandan Zhang,Yining Qian,Hongbing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16368-16382 被引量:21
标识
DOI:10.1109/tnnls.2023.3294064
摘要

Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time–frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining—in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining—this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient—the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daodao发布了新的文献求助10
刚刚
斯文这下牛B了完成签到,获得积分10
刚刚
mmlikeu发布了新的文献求助10
刚刚
李健的小迷弟应助猪猪hero采纳,获得10
1秒前
慕青应助猪猪hero采纳,获得10
1秒前
BaooooooMao完成签到,获得积分10
1秒前
zihanwang应助猪猪hero采纳,获得10
1秒前
1秒前
体贴的青烟完成签到,获得积分10
2秒前
二手的科学家完成签到,获得积分10
2秒前
2秒前
ZZZZZ完成签到,获得积分10
3秒前
贪玩亦云完成签到,获得积分10
3秒前
4秒前
haozi完成签到,获得积分10
5秒前
swamp完成签到,获得积分10
6秒前
细嗅蔷薇完成签到,获得积分10
6秒前
小明发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
现代期待完成签到,获得积分10
7秒前
8秒前
共享精神应助自信大雁采纳,获得10
8秒前
小欢完成签到,获得积分10
9秒前
甜甜的满天完成签到,获得积分10
9秒前
缥缈的寻琴应助猪猪hero采纳,获得10
9秒前
无聊的火龙果应助猪猪hero采纳,获得20
9秒前
汉堡包应助猪猪hero采纳,获得10
9秒前
CAOHOU应助猪猪hero采纳,获得10
9秒前
俊逸的蜜蜂应助猪猪hero采纳,获得10
9秒前
立婉陶应助猪猪hero采纳,获得10
9秒前
逆时针应助猪猪hero采纳,获得10
9秒前
Rondab应助猪猪hero采纳,获得10
9秒前
科研助手6应助猪猪hero采纳,获得10
9秒前
凉凉应助猪猪hero采纳,获得10
9秒前
传奇3应助小明采纳,获得10
11秒前
chen完成签到,获得积分10
11秒前
Bonnie完成签到,获得积分20
11秒前
善学以致用应助meme采纳,获得10
11秒前
taotie完成签到,获得积分10
13秒前
mmlikeu完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259