CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis

计算机科学 系列(地层学) 卷积(计算机科学) 时间序列 时间序列 人工智能 序列(生物学) 计量经济学 数学 应用数学 算法 人工神经网络 统计 地质学 古生物学 遗传学 生物
作者
Zhiqiang Zhang,Yuxuan Chen,Dandan Zhang,Yining Qian,Hongbing Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16368-16382 被引量:24
标识
DOI:10.1109/tnnls.2023.3294064
摘要

Although current time-series forecasting methods have significantly improved the state-of-the-art (SOTA) results for long-sequence time-series forecasting (LSTF), they still have difficulty in capturing and extracting the features and dependencies of long-term sequences and suffer from information utilization bottlenecks and high-computational complexity. To address these issues, a lightweight single-hidden layer feedforward neural network (SLFN) combining convolution mapping and time–frequency decomposition called CTFNet is proposed with three distinctive characteristics. First, time-domain (TD) feature mining—in this article, a method for extracting the long-term correlation of horizontal TD features based on matrix factorization is proposed, which can effectively capture the interdependence among different sample points of a long time series. Second, multitask frequency-domain (FD) feature mining—this can effectively extract different frequency feature information of time-series data from the FD and minimize the loss of data features. Integrating multiscale dilated convolutions, simultaneously focusing on both global and local context feature dependencies at the sequence level, and mining the long-term dependencies of the multiscale frequency information and the spatial dependencies among the different scale frequency information, break the bottleneck of data utilization, and ensure the integrity of feature extraction. Third, highly efficient—the CTFNet model has a short training time and fast inference speed. Our empirical studies with nine benchmark datasets show that compared with state-of-the-art methods, CTFNet can reduce prediction error by 64.7% and 53.7% for multivariate and univariate time series, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
snowy发布了新的文献求助10
2秒前
Dan发布了新的文献求助10
2秒前
陈均涛完成签到,获得积分10
2秒前
无花果应助zheng采纳,获得10
2秒前
Whisper发布了新的文献求助10
3秒前
开放凤发布了新的文献求助10
3秒前
Wangxia发布了新的文献求助10
3秒前
3秒前
yaya发布了新的文献求助10
4秒前
rek发布了新的文献求助10
7秒前
徐徐完成签到,获得积分10
8秒前
糊涂的觅海完成签到 ,获得积分10
8秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
Alex应助科研通管家采纳,获得30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
弱水应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
LaTeXer应助科研通管家采纳,获得100
10秒前
10秒前
木木完成签到 ,获得积分10
13秒前
热情的夏完成签到,获得积分10
14秒前
飞快的访蕊完成签到,获得积分10
14秒前
15秒前
16秒前
Akim应助烟雨江南采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077