Combining physical approaches with deep learning techniques for urban building energy modeling: A comprehensive review and future research prospects

观点 能量建模 深度学习 计算机科学 校长(计算机安全) 管理科学 人工智能 数据科学 工程类 高效能源利用 风险分析(工程) 建筑工程 业务 艺术 电气工程 视觉艺术 操作系统
作者
Zheng Li,Jun Ma,Yi Tan,Cui Guo,Xiao Li
出处
期刊:Building and Environment [Elsevier]
卷期号:246: 110960-110960 被引量:6
标识
DOI:10.1016/j.buildenv.2023.110960
摘要

In recent times, there has been a growing interest in urban building energy modeling (UBEM), owing to its potential benefits for cities. These benefits include aiding city decision-makers in comprehending building energy demand, managing and planning urban energy supply, developing building energy efficiency measures, and analyzing urban building retrofits. The physical approach has historically been a common method for studying energy in urban buildings. Notwithstanding, with the progress of artificial intelligence, powerful deep learning techniques are increasingly being utilized to overcome some of the physical approach's limitations. Consequently, the combination of physical approaches with deep learning algorithms for UBEM research has become a popular area of study. The purpose of this paper is to present an updated review of UBEM studies from three perspectives: model preparation, model simulation, and model calibration. The principal aim of this review is to investigate and analyze the present research status, challenges, obstacles, and research gaps of deep learning techniques in physics-based UBEM. This analysis is followed by a discussion of feasible options. Finally, four distinct viewpoints are provided to explore the future research prospects of deep learning techniques and to propose technically viable pathways for each perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的明雪完成签到,获得积分10
1秒前
1秒前
嘉禾望岗发布了新的文献求助10
1秒前
大橙子完成签到,获得积分10
1秒前
东北信风完成签到 ,获得积分10
1秒前
今后应助祝顺遂采纳,获得10
1秒前
NADA完成签到,获得积分10
2秒前
长安完成签到,获得积分10
2秒前
AA完成签到,获得积分10
2秒前
NANA发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
7秒前
7秒前
8秒前
科研通AI5应助无悔呀采纳,获得10
8秒前
8秒前
littlewhite关注了科研通微信公众号
9秒前
9秒前
零点起步完成签到,获得积分10
9秒前
慕青应助大力的含卉采纳,获得10
9秒前
善良过客发布了新的文献求助10
10秒前
10秒前
10秒前
dildil发布了新的文献求助10
10秒前
10秒前
hu970发布了新的文献求助10
11秒前
11秒前
王思鲁发布了新的文献求助30
11秒前
七个小矮人完成签到,获得积分10
12秒前
Aria完成签到,获得积分10
12秒前
感性的安露应助结实雪卉采纳,获得20
13秒前
零点起步发布了新的文献求助10
14秒前
故意的傲玉应助Ll采纳,获得10
14秒前
斯文败类应助xiuxiu_27采纳,获得10
14秒前
胖子完成签到,获得积分10
14秒前
王巧巧完成签到,获得积分10
14秒前
tangsuyun发布了新的文献求助10
15秒前
祝顺遂发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759