An Immune-Related Gene Prognostic Prediction Risk Model for Neoadjuvant Chemoradiotherapy in Rectal Cancer Using Artificial Intelligence

医学 接收机工作特性 结直肠癌 肿瘤科 内科学 放化疗 弗雷明翰风险评分 免疫系统 癌症 新辅助治疗 疾病 免疫学 乳腺癌
作者
Sung‐Nan Pei,Nan Liu,Xi Luo,Yang Don,Zhe Chen,Danda Li,David Miao,Jiayu Duan,Ouying Yan,Lixia Sheng,Guifang Ouyang,Shu Wang,Xiao Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e350-e350
标识
DOI:10.1016/j.ijrobp.2023.06.2422
摘要

To develop and validate an immune-related gene prognostic model (IRGPM) that can predict disease-free survival (DFS) in patients with locally advanced rectal cancer (LARC) who received neoadjuvant chemoradiotherapy and to clarify the immune characteristics of patients with different prognostic risks.In this study, we obtained transcriptomic and clinical data from the Gene Expression Omnibus (GEO) database and rectal cancer database of West China Hospital. Genes in the RNA immune-oncology panel were extracted. Elastic net was used to identify the immune-related genes that significantly affected the DFS of patients. A prognostic risk model (IRGPM) for rectal cancer was constructed with the random forest method. The prognostic risk score was calculated by the model, and the patients were divided into high- and low-risk groups according to the median risk score. Immune characteristics were analyzed and compared between the high- and low-risk groups.A total of 407 LARC samples were used in this study. A 20-gene signature was identified by elastic net and was found to be significantly correlated with DFS. The IRGPM was constructed on the basis of the 20 immune-related genes. Kaplan‒Meier survival analysis showed poorer 5-year DFS in the high-risk group than in the low-risk group, and the receiver operating characteristic (ROC) curve suggested good model prediction (areas under the curve (AUCs) of 0.87, 0.94, 0.95 at 1, 3, and 5 years, respectively). The model was validated in the GSE190826 cohort (AUCs of 0.79, 0.64, and 0.63 at 1, 3, and 5 years, respectively) and the cohort from our institution (AUCs of 0.64, 0.66, and 0. 64 at 1, 3, and 5 years, respectively). The differentially expressed genes between the high- and low-risk groups were enriched in cytokine‒cytokine receptor interactions. The patients in the low-risk group had higher immune scores than the patients in the high-risk group. Subsequently, we found that activated B cells, activated CD8 T cells, central memory CD8 T cells, macrophages, T follicular helper cells and type 2 helper cells were more abundant in the low-risk group. Moreover, we compared the expression of immune checkpoints and found that the low-risk group had a higher PDCD1 expression level.The IRGPM, which was constructed based on the random forest and elastic net methods, is a promising method to distinguish DFS in LARC patients treated with a standard strategy. The low-risk group identified by IRGPM was characterized by the activation of adaptive immunity in tumor microenvironment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingz完成签到,获得积分0
1秒前
丢一池月光完成签到,获得积分10
1秒前
小张发布了新的文献求助10
3秒前
科研通AI2S应助卫卫采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
文静入学发布了新的文献求助10
6秒前
高兴的小虾米完成签到,获得积分10
7秒前
嗯嗯你说完成签到,获得积分10
8秒前
锦七完成签到,获得积分10
10秒前
CXSCXD完成签到,获得积分10
10秒前
优美从雪发布了新的文献求助10
10秒前
ww完成签到,获得积分10
11秒前
英俊的铭应助搞怪的外套采纳,获得10
13秒前
14秒前
远看寒山完成签到,获得积分10
15秒前
追寻平凡完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
19秒前
nihao完成签到,获得积分20
20秒前
烟花应助wuxunxun2015采纳,获得10
21秒前
卷子卷子发布了新的文献求助10
21秒前
22秒前
阿米完成签到 ,获得积分10
22秒前
干饭宝发布了新的文献求助10
26秒前
猜不猜不发布了新的文献求助10
27秒前
28秒前
28秒前
大模型应助星鱼采纳,获得10
29秒前
29秒前
Rollei应助科研通管家采纳,获得10
29秒前
Rollei应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
orixero应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872