Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning

医学 布里氏评分 接收机工作特性 颈动脉内膜切除术 曲线下面积 冲程(发动机) 逻辑回归 不利影响 围手术期 心肌梗塞 公制(单位) 急诊医学 内科学 外科 机器学习 颈动脉 机械工程 运营管理 计算机科学 工程类 经济
作者
Ben Li,Raj Verma,Derek Beaton,Hani Tamim,Mohamad A. Hussain,Jamal J. Hoballah,Douglas S. Lee,Duminda N. Wijeysundera,Charles de Mestral,Muhammad Mamdani,Mohammed Al‐Omran
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:12 (20) 被引量:1
标识
DOI:10.1161/jaha.123.030508
摘要

Background Carotid endarterectomy (CEA) is a major vascular operation for stroke prevention that carries significant perioperative risks; however, outcome prediction tools remain limited. The authors developed machine learning algorithms to predict outcomes following CEA. Methods and Results The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent CEA between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse cardiovascular events (composite of stroke, myocardial infarction, or death). The data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using preoperative features. The primary metric for evaluating model performance was area under the receiver operating characteristic curve. Model robustness was evaluated with calibration plot and Brier score. Overall, 38 853 patients underwent CEA during the study period. Thirty-day major adverse cardiovascular events occurred in 1683 (4.3%) patients. The best performing prediction model was XGBoost, achieving an area under the receiver operating characteristic curve of 0.91 (95% CI, 0.90-0.92). In comparison, logistic regression had an area under the receiver operating characteristic curve of 0.62 (95% CI, 0.60-0.64), and existing tools in the literature demonstrate area under the receiver operating characteristic curve values ranging from 0.58 to 0.74. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The strongest predictive feature in our algorithm was carotid symptom status. Conclusions The machine learning models accurately predicted 30-day outcomes following CEA using preoperative data and performed better than existing tools. They have potential for important utility in guiding risk-mitigation strategies to improve outcomes for patients being considered for CEA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yidi01完成签到,获得积分10
2秒前
CipherSage应助淡淡采纳,获得10
2秒前
桐桐应助酸奶鱼采纳,获得10
3秒前
田攀发布了新的文献求助10
3秒前
wsj发布了新的文献求助10
3秒前
Cc发布了新的文献求助10
3秒前
shiiiny发布了新的文献求助10
4秒前
幽默涟妖发布了新的文献求助10
4秒前
5秒前
cc发布了新的文献求助10
6秒前
科研通AI6应助hzs采纳,获得10
6秒前
故渊丶完成签到 ,获得积分10
6秒前
Zzzzzzz发布了新的文献求助10
7秒前
情怀应助潇洒的如松采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
熊尼完成签到,获得积分20
9秒前
打打应助mdjinij采纳,获得10
9秒前
10秒前
李博士发布了新的文献求助10
10秒前
哈哈应助叶夜南采纳,获得10
11秒前
12秒前
小翼完成签到,获得积分10
14秒前
哈哈应助叶夜南采纳,获得10
14秒前
15秒前
15秒前
小二郎应助shiiiny采纳,获得10
17秒前
391X小king发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
小二郎应助漂亮的哈密瓜采纳,获得10
19秒前
迷人秋翠完成签到,获得积分10
21秒前
柿子完成签到 ,获得积分10
21秒前
Zerolii发布了新的文献求助10
22秒前
23秒前
24秒前
李爱国应助Brass采纳,获得10
24秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570