Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning

医学 布里氏评分 接收机工作特性 颈动脉内膜切除术 曲线下面积 冲程(发动机) 逻辑回归 不利影响 围手术期 心肌梗塞 公制(单位) 急诊医学 内科学 外科 机器学习 颈动脉 机械工程 运营管理 计算机科学 工程类 经济
作者
Ben Li,Raj Verma,Derek Beaton,Hani Tamim,Mohamad A. Hussain,Jamal J. Hoballah,Douglas S. Lee,Duminda N. Wijeysundera,Charles de Mestral,Muhammad Mamdani,Mohammed Al‐Omran
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:12 (20) 被引量:1
标识
DOI:10.1161/jaha.123.030508
摘要

Background Carotid endarterectomy (CEA) is a major vascular operation for stroke prevention that carries significant perioperative risks; however, outcome prediction tools remain limited. The authors developed machine learning algorithms to predict outcomes following CEA. Methods and Results The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent CEA between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse cardiovascular events (composite of stroke, myocardial infarction, or death). The data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using preoperative features. The primary metric for evaluating model performance was area under the receiver operating characteristic curve. Model robustness was evaluated with calibration plot and Brier score. Overall, 38 853 patients underwent CEA during the study period. Thirty-day major adverse cardiovascular events occurred in 1683 (4.3%) patients. The best performing prediction model was XGBoost, achieving an area under the receiver operating characteristic curve of 0.91 (95% CI, 0.90-0.92). In comparison, logistic regression had an area under the receiver operating characteristic curve of 0.62 (95% CI, 0.60-0.64), and existing tools in the literature demonstrate area under the receiver operating characteristic curve values ranging from 0.58 to 0.74. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The strongest predictive feature in our algorithm was carotid symptom status. Conclusions The machine learning models accurately predicted 30-day outcomes following CEA using preoperative data and performed better than existing tools. They have potential for important utility in guiding risk-mitigation strategies to improve outcomes for patients being considered for CEA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人问兰发布了新的文献求助10
刚刚
刚刚
笑场发布了新的文献求助10
1秒前
2秒前
顾矜应助烂漫吐司采纳,获得10
2秒前
爆米花应助ifast采纳,获得10
3秒前
3秒前
柴子完成签到,获得积分10
3秒前
4秒前
元水云完成签到,获得积分10
4秒前
yar应助泽灵采纳,获得10
5秒前
洛丶发布了新的文献求助10
6秒前
小蘑菇应助zhou国兵采纳,获得10
6秒前
7秒前
wangfeng007发布了新的文献求助10
7秒前
10秒前
田様应助小胖采纳,获得10
10秒前
坚定的藏花完成签到,获得积分10
11秒前
Camellia发布了新的文献求助10
12秒前
DQY完成签到,获得积分10
12秒前
JamesPei应助Ever余儿采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
YY洋发布了新的文献求助10
13秒前
14秒前
成就映秋发布了新的文献求助10
14秒前
小蘑菇应助悲凉的雁风采纳,获得10
14秒前
猪肉铺完成签到,获得积分10
14秒前
文艺清涟完成签到,获得积分10
15秒前
天天快乐应助Lea_at_采纳,获得10
15秒前
wykwhu发布了新的文献求助10
15秒前
Accept完成签到,获得积分10
15秒前
vault777完成签到,获得积分10
16秒前
宫冷雁发布了新的文献求助10
17秒前
lxy发布了新的文献求助10
17秒前
慕青应助积极玲采纳,获得10
17秒前
17秒前
wyt完成签到,获得积分10
17秒前
LTDs完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798