Ponzi Scheme Detection in Smart Contract via Transaction Semantic Representation Learning

计算机科学 数据库事务 分布式事务 图形 语义学(计算机科学) 智能合约 人工智能 计算机安全 机器学习 理论计算机科学 事务处理 数据库 程序设计语言
作者
Jie Cai,Bin Li,Jiale Zhang,Xiaobing Sun
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tr.2023.3319318
摘要

The Ponzi scheme implemented through smart contracts is one of the most common scams on the blockchain platform. Although various learning-based Ponzi smart contract detection approaches have been proposed, they still suffer from several limitations, i.e., 1) extracting insufficient semantics and gathering Ponzi irrelevant components from the smart contract during feature engineering, and 2) underutilizing structured semantic features during model training. As the Ponzi scheme is an economic crime with the typical Rob-Peter-to-Pay-Paul transaction pattern, we propose a transaction semantic learning based approach to mitigate the above limitations. The fundamental idea of our approach is to represent the transaction-related semantics of a smart contract as a graph and utilize a graph convolutional network (GCN) to learn the potential Ponzi-like transaction pattern from it. We define a novel code representation named slice transaction property graph (sTPG) to represent the transaction-related semantics, which can encode multiple transaction-related semantics inside a smart contract function into a graph and eliminate other irrelevant fragments. Then, we propose a relation-sensitive GCN as the learning model to identify potential Ponzi-scheme-like transaction patterns from sTPG by considering both nodes and edges features in sTPG. We evaluate our approach on two datasets: 1) smart contracts collected from Forum and Public datasets, and 2) really deployed smart contracts on the Ethereum blockchain. The experiment results show that our approach outperforms the state-of-the-art learning-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
badbaby完成签到 ,获得积分10
1秒前
张雷应助ZSQ采纳,获得10
1秒前
2秒前
想s完成签到,获得积分20
3秒前
MD99发布了新的文献求助10
3秒前
11_aa完成签到,获得积分10
4秒前
胖蛋蛋蛋完成签到,获得积分10
6秒前
钱念波发布了新的文献求助30
6秒前
berg发布了新的文献求助10
7秒前
富有皮带完成签到,获得积分10
7秒前
8秒前
情怀应助吴先生采纳,获得10
9秒前
9秒前
十八完成签到,获得积分10
12秒前
kkk完成签到,获得积分20
12秒前
12秒前
SciGPT应助想s采纳,获得10
14秒前
科研通AI2S应助MD99采纳,获得10
15秒前
LWJJNU完成签到,获得积分10
15秒前
钱念波完成签到,获得积分10
16秒前
18秒前
19秒前
英俊的铭应助只然采纳,获得10
22秒前
berg完成签到,获得积分10
23秒前
LWJJNU发布了新的文献求助10
25秒前
喏晨完成签到 ,获得积分10
25秒前
默默衣发布了新的文献求助10
25秒前
25秒前
28秒前
清爽难胜完成签到,获得积分10
29秒前
心心完成签到,获得积分10
29秒前
Dada应助君霄采纳,获得30
31秒前
31秒前
赵俊博完成签到,获得积分10
35秒前
fei8047发布了新的文献求助10
35秒前
华仔应助全蛋857采纳,获得10
35秒前
whatever应助YY采纳,获得10
35秒前
hanliulaixi发布了新的文献求助10
36秒前
脑洞疼应助卓水绿采纳,获得10
37秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309