EQCCT: A Production-Ready Earthquake Detection and Phase-Picking Method Using the Compact Convolutional Transformer

计算机科学 稳健性(进化) 卷积神经网络 变压器 模式识别(心理学) 深度学习 人工智能 数据挖掘 算法 生物化学 量子力学 基因 物理 电压 化学
作者
Omar M. Saad,Yunfeng Chen,Daniel Siervo,Fangxue Zhang,Alexandros Savvaidis,G. Huang,Nadine Igonin,Sergey Fomel,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:7
标识
DOI:10.1109/tgrs.2023.3319440
摘要

We propose to implement a compact convolutional transformer (CCT) for picking the earthquake phase arrivals (EQCCT). The proposed method consists of two branches, with each of them responsible for picking the arrival times of the P- or S-wave phases. We use the STEAD dataset to train and validate the proposed EQCCT algorithm. We split the STEAD dataset into 85% for training, 5% for validation, and 10% for testing To facilitate the training process, we implement several data augmentation strategies to the training set by adding Gaussian noise, randomly shifting the waveforms, adding a second earthquake to the input window, and dropping one or two channels from the seismogram in the STEAD dataset. As a result, the EQCCT model outperforms both EQTransformer and PhaseNet, the two most popular deep-learning-based phase-picking methods. Considering the true positive criterion as the picked phases arriving within 0.5 s of the reference times, the EQCCT achieves the lowest mean absolute error (MAE) compared to the EQTransformer and PhaseNet methods for the STEAD, Japanese, Instance and Texas datasets. Our EQCCT network also demonstrates superior performance in other metrics such as precision, recall, and F1 score. We apply the pre-trained model to three independent datasets (not included in the training set), i.e., the Japanese, Texas, and Instance datasets, and achieve higher picking accuracy than the EQTransformer and the PhaseNet in terms of various statistical metrics, demonstrating a stronger robustness and generalization ability of the EQCCT. The real-time application of EQCCT in the Texas Seismological Network (TexNet) further demonstrates its production-ready performance in terms of detection and phase-picking accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thinking完成签到,获得积分20
1秒前
1秒前
CAOHOU应助sasa采纳,获得10
1秒前
书桓发布了新的文献求助10
1秒前
天天快乐应助科研小白采纳,获得10
1秒前
李李李李李完成签到,获得积分10
2秒前
朴实一一完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
西瓜完成签到,获得积分10
4秒前
如初完成签到,获得积分10
4秒前
5秒前
科研小白完成签到,获得积分10
5秒前
FashionBoy应助ww采纳,获得10
5秒前
飞快的盼易完成签到,获得积分10
5秒前
嘟嘟金子完成签到,获得积分10
5秒前
梅溪湖的提词器完成签到,获得积分10
8秒前
8秒前
9秒前
大力的馒头完成签到 ,获得积分10
9秒前
冷傲向松完成签到,获得积分10
9秒前
Yiyyan完成签到,获得积分10
10秒前
希望天下0贩的0应助wkyt采纳,获得10
10秒前
认真小海豚应助悠咪采纳,获得10
10秒前
smkmfy完成签到,获得积分10
10秒前
11秒前
George完成签到,获得积分10
11秒前
SciGPT应助搞怪莫茗采纳,获得10
12秒前
Sunshine完成签到,获得积分10
12秒前
CINDERICE完成签到,获得积分10
12秒前
YG97完成签到,获得积分10
12秒前
彭于晏应助Oyster7采纳,获得10
13秒前
13秒前
yuanzhi完成签到,获得积分10
14秒前
请叫我风吹麦浪完成签到,获得积分0
14秒前
14秒前
李健应助chrysan采纳,获得10
14秒前
科研小白发布了新的文献求助10
14秒前
默默纲完成签到,获得积分10
14秒前
俭朴钢铁侠完成签到 ,获得积分10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044