清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Interpretable Radiomics Model to Distinguish Nodular Goiter From Malignant Thyroid Nodules

接收机工作特性 医学 Lasso(编程语言) 甲状腺结节 人工智能 特征选择 无线电技术 特征(语言学) 机器学习 回顾性队列研究 甲状腺肿 放射科 核医学 模式识别(心理学) 甲状腺 内科学 计算机科学 病理 语言学 哲学 万维网
作者
Hao Zhang,Yunfeng Yang,Chao Yang,Yuanyuan Yang,Xinhong He,Chao Chen,Xue-Lin Song,Leilei Ying,Ying Wang,Lichao Xu,Wentao Li
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (2): 334-342
标识
DOI:10.1097/rct.0000000000001544
摘要

Objectives The purpose of this study is to inquire about the potential association between radiomics features and the pathological nature of thyroid nodules (TNs), and to propose an interpretable radiomics-based model for predicting the risk of malignant TN. Methods In this retrospective study, computed tomography (CT) imaging and pathological data from 141 patients with TN were collected. The data were randomly stratified into a training group (n = 112) and a validation group (n = 29) at a ratio of 4:1. A total of 1316 radiomics features were extracted by using the pyradiomics tool. The redundant features were removed through correlation testing, and the least absolute shrinkage and selection operator (LASSO) or the minimum redundancy maximum relevance standard was used to select features. Finally, 4 different machine learning models (RF Hybrid Feature, SVM Hybrid Feature, RF, and LASSO) were constructed. The performance of the 4 models was evaluated using the receiver operating characteristic curve. The calibration curve, decision curve analysis, and SHapley Additive exPlanations method were used to evaluate or explain the best radiomics machine learning model. Results The optimal radiomics model (RF Hybrid Feature model) demonstrated a relatively high degree of discrimination with an area under the receiver operating characteristic curve (AUC) of 0.87 (95% CI, 0.70–0.97; P < 0.001) for the validation cohort. Compared with the commonly used LASSO model (AUC, 0.78; 95% CI, 0.60–0.91; P < 0.01), there is a significant improvement in AUC in the validation set, net reclassification improvement, 0.79 (95% CI, 0.13–1.46; P < 0.05), and integrated discrimination improvement, 0. 20 (95% CI, 0.10–0.30; P < 0.001). Conclusion The interpretable radiomics model based on CT performs well in predicting benign and malignant TNs by using quantitative radiomics features of the unilateral total thyroid. In addition, the data preprocessing method incorporating different layers of features has achieved excellent experimental results. Clinical relevance statement As the detection rate of TNs continues to increase, so does the diagnostic burden on radiologists. This study establishes a noninvasive, interpretable and accurate machine learning model to rapidly identify the nature of TN found in CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
1分钟前
1分钟前
shuikoubl发布了新的文献求助20
1分钟前
1分钟前
lisasaguan发布了新的文献求助10
1分钟前
充电宝应助lisasaguan采纳,获得10
1分钟前
lisasaguan完成签到,获得积分10
2分钟前
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
稳重岩完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
养条狗吧发布了新的文献求助10
3分钟前
3分钟前
物语发布了新的文献求助10
3分钟前
养条狗吧完成签到,获得积分10
3分钟前
传奇3应助物语采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
xingyan发布了新的文献求助10
4分钟前
CipherSage应助xingyan采纳,获得10
4分钟前
藤椒辣鱼应助科研通管家采纳,获得10
6分钟前
史前巨怪完成签到,获得积分10
6分钟前
6分钟前
百里幻竹发布了新的文献求助10
6分钟前
6分钟前
jyy应助shuikoubl采纳,获得10
8分钟前
百里幻竹发布了新的文献求助10
8分钟前
8分钟前
藤椒辣鱼应助科研通管家采纳,获得10
8分钟前
HH1202完成签到 ,获得积分10
9分钟前
9分钟前
脑洞疼应助yga18采纳,获得10
10分钟前
10分钟前
豆豆发布了新的文献求助10
10分钟前
10分钟前
lyy完成签到 ,获得积分10
10分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055214
捐赠科研通 2746957
什么是DOI,文献DOI怎么找? 1507180
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695936