Machine learning approach to gait deviation prediction based on isokinetic data acquired from biometric sensors

步态 随机森林 生物识别 计算机科学 回归 人工智能 步态分析 回归分析 决策树 标准差 机器学习 物理医学与康复 统计 数学 医学
作者
Adam Krechowicz,Stanisław Deniziak,Daniel Kaczmarski
出处
期刊:Gait & Posture [Elsevier]
卷期号:101: 55-59
标识
DOI:10.1016/j.gaitpost.2023.01.015
摘要

Analyzing gait deviation is one of the crucial factors during the diagnosis and treatment of children with Cerebral Palsy (CP). The typical diagnostic procedure requires an expensive and complicated three-dimensional gait analysis system based on visual sensors. In this work, we focus on predicting well-known gait pathology scores using only information collected from the BS4P, the affordable isokinetic dynamometer. Using such equipment, it is possible to determine gait pathological indices such as the gait deviation index (GDI) or the Gillette gait index (GGI).Are there correlations between the results of examining patients with CP on the Biodex Pro 4 device and the gait quality metrics (GDI and GGI)?The isokinetic data acquired from biometric sensors (74 records) were analyzed using big data methods. We used several Machine Learning methods to find the correlation between gait deviation and isokinetic data: Adaptive Boosting Regression, K-nearest Neighbor, Decision Tree Regression, Random Forest Regression, and Gradient Boost Regression.In this paper, we provided a detailed comparison of different machine learning regression models in predicting gait quality in patients with CP based only on the data gathered from affordable Biodex 4 Pro device. The best result was obtained using the gradient boosting regression model with Mean Absolute Percentage Error of 6%. However, it was not possible to precisely predict the GGI index using this method.The results obtained showed promising results in the evaluation of gait index scores, which gives the possibility of diagnosing patients with CP without the use of expensive optometric systems. Evaluating gait metrics using the approach proposed in this paper could be very helpful for both physicians and physiotherapists in assessing the condition of patients with CP, as well as other diseases related to gait problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫笑寒发布了新的文献求助10
刚刚
1秒前
doctor发布了新的文献求助10
1秒前
4秒前
清秀灵薇完成签到,获得积分10
6秒前
7秒前
莫笑寒完成签到,获得积分10
9秒前
11秒前
12秒前
用心听完成签到,获得积分20
12秒前
烟花应助王359采纳,获得10
12秒前
栗子发布了新的文献求助10
12秒前
成就问寒发布了新的文献求助30
13秒前
ff完成签到,获得积分10
14秒前
固的曼完成签到,获得积分10
15秒前
用心听发布了新的文献求助10
18秒前
20秒前
23秒前
成就问寒完成签到,获得积分10
25秒前
HeyYou完成签到,获得积分10
27秒前
上进生发布了新的文献求助10
27秒前
29秒前
研友_qZ6V1Z完成签到,获得积分20
29秒前
30秒前
31秒前
富兰克林的薄荷糖完成签到,获得积分10
31秒前
33秒前
35秒前
无辜访彤发布了新的文献求助10
35秒前
丘比特应助SS采纳,获得10
36秒前
王359发布了新的文献求助10
36秒前
海城好人发布了新的文献求助30
37秒前
王359完成签到,获得积分10
41秒前
詹密完成签到,获得积分10
42秒前
Ava应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
Akim应助科研通管家采纳,获得80
43秒前
大个应助科研通管家采纳,获得10
43秒前
ding应助科研通管家采纳,获得10
44秒前
44秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228