USTW Vs. STW: A Comparative Analysis for Exam Question Classification based on Bloom’s Taxonomy

加权 人工智能 朴素贝叶斯分类器 计算机科学 机器学习 支持向量机 tf–国际设计公司 期限(时间) 分类学(生物学) 分类方案 自然语言处理 生物 物理 放射科 医学 量子力学 植物
作者
Mohammed Osman Gani,Ramesh Kumar Ayyasamy,Anbuselvan Sangodiah,Yong Tien Fui
出处
期刊:Mendel ... [Brno University of Technology]
卷期号:28 (2): 25-40 被引量:2
标识
DOI:10.13164/mendel.2022.2.025
摘要

Bloom’s Taxonomy (BT) is widely used in educational institutions to produce high-quality exam papers to evaluate students’ knowledge at different cognitive levels. However, manual question labeling takes a long time, and not all evaluators are familiar with BT. The researchers worked to automate the exam question classification process based on BT as a solution. Enhancement in term weighting is one of the ways to increase classification accuracy while working with text data. However, all the past work on the term weighting in exam question classification focused on unsupervised term weighting (USTW) schemes. The supervised term weighting (STW) schemes showed effectiveness in text classification but were not addressed in past studies of exam question classification. As a result, this study focused on the effectiveness of STW in classifying exam questions using BT. Hence, this research performed a comparative analysis between the USTW schemes and STW for exam question classification. The STW schemes used in this study are TF-ICF, TF-IDF-ICF, and TF-IDF-ICSDF, whereas the USTW schemes used for comparison are TF-IDF, ETF-IDF, and TFPOS-IDF. This study used Support Vector Machines (SVM), Na¨ıve Bayes (NB), and Multilayer Perceptron (MLP) to train the model. Accuracy and F1 score were used in this study to evaluate the classification result. The experiment result showed that overall, the STW scheme TF-ICF outperformed all the other schemes, followed by the USTW scheme ETF-IDF. Both the ETF-IDF and TFPOS-IDF outperformed standard TFIDF. The outcome of this study indicates the future research direction where the combination of STW and USTW schemes may increase the Accuracy of BT-based exam question classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TORCH完成签到 ,获得积分10
1秒前
李健的小迷弟应助lin采纳,获得10
1秒前
1秒前
2秒前
TT发布了新的文献求助10
2秒前
奶糖完成签到,获得积分10
5秒前
丘比特应助浪迹天涯采纳,获得10
6秒前
8秒前
8秒前
虚幻白玉发布了新的文献求助10
9秒前
清客完成签到 ,获得积分10
9秒前
传奇3应助阳阳采纳,获得10
9秒前
11秒前
皮皮桂发布了新的文献求助10
11秒前
Hello应助无奈傲菡采纳,获得10
11秒前
故意的傲玉应助FENGHUI采纳,获得10
12秒前
13秒前
科研通AI5应助nextconnie采纳,获得10
14秒前
James完成签到,获得积分10
14秒前
15秒前
Lucas应助sun采纳,获得10
16秒前
KristenStewart完成签到,获得积分10
18秒前
过时的热狗完成签到,获得积分10
18秒前
点点完成签到,获得积分10
18秒前
Zxc发布了新的文献求助10
19秒前
涨芝士完成签到 ,获得积分10
20秒前
21秒前
无名欧文关注了科研通微信公众号
21秒前
科研123完成签到,获得积分10
23秒前
crescent完成签到 ,获得积分10
25秒前
无奈傲菡发布了新的文献求助10
25秒前
烟花应助123号采纳,获得10
28秒前
超帅的遥完成签到,获得积分10
28秒前
Zxc完成签到,获得积分10
29秒前
lbt完成签到 ,获得积分10
30秒前
yao完成签到 ,获得积分10
31秒前
31秒前
33秒前
34秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849