USTW Vs. STW: A Comparative Analysis for Exam Question Classification based on Bloom’s Taxonomy

加权 人工智能 朴素贝叶斯分类器 计算机科学 机器学习 支持向量机 tf–国际设计公司 期限(时间) 分类学(生物学) 分类方案 自然语言处理 生物 物理 放射科 医学 量子力学 植物
作者
Mohammed Osman Gani,Ramesh Kumar Ayyasamy,Anbuselvan Sangodiah,Yong Tien Fui
出处
期刊:Mendel ... [Brno University of Technology]
卷期号:28 (2): 25-40 被引量:2
标识
DOI:10.13164/mendel.2022.2.025
摘要

Bloom’s Taxonomy (BT) is widely used in educational institutions to produce high-quality exam papers to evaluate students’ knowledge at different cognitive levels. However, manual question labeling takes a long time, and not all evaluators are familiar with BT. The researchers worked to automate the exam question classification process based on BT as a solution. Enhancement in term weighting is one of the ways to increase classification accuracy while working with text data. However, all the past work on the term weighting in exam question classification focused on unsupervised term weighting (USTW) schemes. The supervised term weighting (STW) schemes showed effectiveness in text classification but were not addressed in past studies of exam question classification. As a result, this study focused on the effectiveness of STW in classifying exam questions using BT. Hence, this research performed a comparative analysis between the USTW schemes and STW for exam question classification. The STW schemes used in this study are TF-ICF, TF-IDF-ICF, and TF-IDF-ICSDF, whereas the USTW schemes used for comparison are TF-IDF, ETF-IDF, and TFPOS-IDF. This study used Support Vector Machines (SVM), Na¨ıve Bayes (NB), and Multilayer Perceptron (MLP) to train the model. Accuracy and F1 score were used in this study to evaluate the classification result. The experiment result showed that overall, the STW scheme TF-ICF outperformed all the other schemes, followed by the USTW scheme ETF-IDF. Both the ETF-IDF and TFPOS-IDF outperformed standard TFIDF. The outcome of this study indicates the future research direction where the combination of STW and USTW schemes may increase the Accuracy of BT-based exam question classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sota完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
苏步清完成签到,获得积分10
1秒前
add关闭了add文献求助
1秒前
SZY发布了新的文献求助10
2秒前
哈哈王发布了新的文献求助10
2秒前
CodeCraft应助petrichor采纳,获得10
2秒前
2秒前
轻松土豆完成签到,获得积分10
2秒前
徐zhipei发布了新的文献求助10
2秒前
3秒前
七七完成签到,获得积分10
3秒前
科研小王发布了新的文献求助10
3秒前
斯文败类应助昏睡的绿海采纳,获得10
3秒前
Maestro_S应助奥利奥利奥采纳,获得10
4秒前
冷茗关注了科研通微信公众号
4秒前
4秒前
5秒前
Sara完成签到,获得积分10
5秒前
CWEI完成签到,获得积分10
5秒前
善学以致用应助科研究采纳,获得10
6秒前
6秒前
6秒前
超超发布了新的文献求助10
6秒前
6秒前
言希关注了科研通微信公众号
7秒前
7秒前
7秒前
刘迎完成签到 ,获得积分10
7秒前
朴实曼岚发布了新的文献求助10
8秒前
自觉的芫发布了新的文献求助30
8秒前
8秒前
8秒前
靓丽月饼发布了新的文献求助10
8秒前
Accepted完成签到,获得积分10
9秒前
9秒前
852应助番茄采纳,获得10
9秒前
osachon完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403