可解释性
阻力
Lift(数据挖掘)
结束语(心理学)
粒子(生态学)
计算机科学
二进制数
扭矩
点(几何)
粒子系统
人工智能
数学
物理
机械
机器学习
几何学
地质学
热力学
海洋学
操作系统
算术
市场经济
经济
作者
Bhargav Sriram Siddani,S. Balachandar
出处
期刊:Physical review fluids
[American Physical Society]
日期:2023-01-17
卷期号:8 (1)
被引量:25
标识
DOI:10.1103/physrevfluids.8.014303
摘要
Point-particle closure models that are utilized in Euler-Lagrange simulations play an important role in replicating true dynamics of particle-laden flows. The accuracy of these point-particle models depends on how well they incorporate the local microstructural information of neighboring particles. The current work presents a physics-based hierarchical machine learning approach for developing robust N-body closures. The inclusion of ternary interactions, in addition to binary interactions, enabled by the hierarchical approach leads to improved predictions.
科研通智能强力驱动
Strongly Powered by AbleSci AI