Evaluation method of fabric pilling grades based on saliency-based deep convolutional network

人工智能 预处理器 计算机科学 模式识别(心理学) 残余物 计算机视觉 算法
作者
Shengqi Guan,Dongdong Liu,Luping Hu,Ming Lei,Hongyu Shi
出处
期刊:Textile Research Journal [SAGE]
卷期号:93 (13-14): 2980-2994 被引量:2
标识
DOI:10.1177/00405175221149678
摘要

In order to improve the objectivity of fabric pilling evaluation, a saliency deep convolutional network method for fabric pilling evaluation is proposed. First of all, the fabric pilling instrument is used to generate pilling fabric samples as a nonstandard dataset that is added to the standard fabric pilling dataset. The dataset is expanded through data augmentation to increase the number and diversity of pilling data. Then, a saliency preprocessing model is constructed to achieve the preprocessing of the fabric pilling image dataset by fusing the local and global saliency map. Finally, improvements to the ResNet 34 network model are made. The convolutional layer is improved to achieve small target pilling features enhancement. The residual module in the residual network is improved by using ReLU6 as the activation function, giving a down-sampling convolution on the shortcut branch of each residual block and adding average pooling, which avoids the loss of weight information. An improved attention mechanism module is added to extract fully and learn fabric pilling features according to the channel attention mechanism in parallel with the spatial attention mechanism. The recommended method uses standard and nonstandard pilling fabric samples to expand the number and diversity of the dataset. The improved ResNet 34 network model improves the ability of feature extraction and learning, thus improving the accuracy of pilling evaluation. The experimental results show that the average accuracy of the proposed method is 93.88%, which indicates that the pilling grade evaluation algorithm used can effectively achieve the grade evaluation of fabric pilling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助落后翠柏采纳,获得10
1秒前
悠悠应助奶油布丁采纳,获得10
2秒前
希望天下0贩的0应助蓦然采纳,获得10
3秒前
3秒前
3秒前
烦烦烦发布了新的文献求助10
4秒前
4秒前
我是老大应助qaz采纳,获得10
5秒前
6秒前
6秒前
端庄的香薇完成签到,获得积分10
7秒前
7秒前
云漫山完成签到 ,获得积分10
7秒前
叶帆完成签到,获得积分10
8秒前
桐桐应助3927456843采纳,获得30
8秒前
che发布了新的文献求助10
8秒前
共享精神应助MeetAgainLZH采纳,获得10
9秒前
9秒前
xing发布了新的文献求助10
9秒前
123完成签到 ,获得积分10
9秒前
10秒前
欧贤书发布了新的文献求助10
10秒前
天天快乐应助Gryphon采纳,获得10
11秒前
粗犷的冷霜完成签到,获得积分10
12秒前
小马发布了新的文献求助10
13秒前
Sunny完成签到,获得积分10
13秒前
小满发布了新的文献求助10
13秒前
14秒前
15秒前
科目三应助董秋白采纳,获得10
15秒前
17秒前
asdfzxcv应助陶醉的梦露采纳,获得10
18秒前
18秒前
olivia发布了新的文献求助10
19秒前
20秒前
桃子发布了新的文献求助10
24秒前
Wudifairy完成签到,获得积分10
24秒前
xbx1991完成签到,获得积分10
25秒前
小满完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704