Evaluation method of fabric pilling grades based on saliency-based deep convolutional network

人工智能 预处理器 计算机科学 模式识别(心理学) 残余物 计算机视觉 算法
作者
Shengqi Guan,Dongdong Liu,Luping Hu,Ming Lei,Hongyu Shi
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (13-14): 2980-2994 被引量:2
标识
DOI:10.1177/00405175221149678
摘要

In order to improve the objectivity of fabric pilling evaluation, a saliency deep convolutional network method for fabric pilling evaluation is proposed. First of all, the fabric pilling instrument is used to generate pilling fabric samples as a nonstandard dataset that is added to the standard fabric pilling dataset. The dataset is expanded through data augmentation to increase the number and diversity of pilling data. Then, a saliency preprocessing model is constructed to achieve the preprocessing of the fabric pilling image dataset by fusing the local and global saliency map. Finally, improvements to the ResNet 34 network model are made. The convolutional layer is improved to achieve small target pilling features enhancement. The residual module in the residual network is improved by using ReLU6 as the activation function, giving a down-sampling convolution on the shortcut branch of each residual block and adding average pooling, which avoids the loss of weight information. An improved attention mechanism module is added to extract fully and learn fabric pilling features according to the channel attention mechanism in parallel with the spatial attention mechanism. The recommended method uses standard and nonstandard pilling fabric samples to expand the number and diversity of the dataset. The improved ResNet 34 network model improves the ability of feature extraction and learning, thus improving the accuracy of pilling evaluation. The experimental results show that the average accuracy of the proposed method is 93.88%, which indicates that the pilling grade evaluation algorithm used can effectively achieve the grade evaluation of fabric pilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰阔落发布了新的文献求助10
刚刚
鳐鱼完成签到,获得积分10
刚刚
哈哈哈完成签到,获得积分10
刚刚
李健的小迷弟应助egnaro采纳,获得30
刚刚
没什么是看文献解决不了的完成签到,获得积分10
1秒前
害怕的凡英完成签到,获得积分10
1秒前
收集快乐发布了新的文献求助10
1秒前
青云发布了新的文献求助10
2秒前
可可完成签到 ,获得积分10
2秒前
Dank1ng完成签到,获得积分10
2秒前
星辰大海应助rinki01采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
3秒前
活泼的南风完成签到 ,获得积分10
3秒前
T拐拐发布了新的文献求助10
4秒前
慕青应助yannnis采纳,获得10
4秒前
上官若男应助明明采纳,获得10
4秒前
上官若男应助过意采纳,获得10
4秒前
qly发布了新的文献求助10
4秒前
wangyalei发布了新的文献求助10
5秒前
孙福禄应助void科学家采纳,获得10
5秒前
逝者如斯只是看着完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
ding应助轻歌水越采纳,获得10
8秒前
ding应助12334采纳,获得10
9秒前
kk完成签到 ,获得积分10
9秒前
小马甲应助芜湖采纳,获得10
10秒前
佳佳应助小慧儿采纳,获得10
10秒前
橙汁得配曼妥思完成签到,获得积分10
10秒前
李爱国应助无略采纳,获得30
11秒前
11秒前
木湾完成签到,获得积分10
11秒前
JIAca发布了新的文献求助10
11秒前
qin希望应助mojito采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600