阳极
电解质
水溶液
枝晶(数学)
电化学
材料科学
锌
化学工程
溶剂化
无机化学
吸附
电偶阳极
化学
离子
有机化学
电极
冶金
物理化学
几何学
工程类
数学
阴极保护
作者
Qianzhi Gou,Haoran Luo,Qi Zhang,Jiangbin Deng,Ruizheng Zhao,Omololu Odunmbaku,Lei Wang,Lingjie Li,Yujie Zheng,Jun Li,Dongliang Chao,Meng Li
出处
期刊:Small
[Wiley]
日期:2023-01-17
卷期号:19 (10)
被引量:106
标识
DOI:10.1002/smll.202207502
摘要
Abstract Aqueous zinc‐ion batteries hold attractive potential for large‐scale energy storage devices owing to their prominent electrochemical performance and high security. Nevertheless, the applications of aqueous electrolytes have generated various challenges, including uncontrolled dendrite growth and parasitic reactions, thereby deteriorating the Zn anode's stability. Herein, inspired by the superior affinity between Zn 2+ and amino acid chains in the zinc finger protein, a cost‐effective and green glycine additive is incorporated into aqueous electrolytes to stabilize the Zn anode. As confirmed by experimental characterizations and theoretical calculations, the glycine additives can not only reorganize the solvation sheaths of hydrated Zn 2+ via partial substitution of coordinated H 2 O but also preferentially adsorb onto the Zn anode, thereby significantly restraining dendrite growth and interfacial side reactions. Accordingly, the Zn anode could realize a long lifespan of over 2000 h and enhanced reversibility (98.8%) in the glycine‐containing electrolyte. Furthermore, the assembled Zn||α‐MnO 2 full cells with glycine‐modified electrolyte also delivers substantial capacity retention (82.3% after 1000 cycles at 2 A g ‐1 ), showing promising application prospects. This innovative bio‐inspired design concept would inject new vitality into the development of aqueous electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI