Enabling smart parking for smart cities using Internet of Things (IoT) and machine learning

物联网 计算机科学 智慧城市 计算机安全 互联网隐私
作者
Mofadal Alymani,Lenah Abdulaziz Almoqhem,Dhuha Ahmed Alabdulwahab,Abdulrahman Abdullah Alghamdi,Hussain Alshahrani,Khalid Raza
出处
期刊:PeerJ [PeerJ]
卷期号:11: e2544-e2544
标识
DOI:10.7717/peerj-cs.2544
摘要

With the escalating number of vehicles and the lack of parking spaces, the issue of parking has become a significant problem in major cities as it is a daily occurrence for educational institutions, companies, and government facilities, resulting in fuel wastage and time inefficiencies. In their work lives, employees often face problems when parking their cars in the work parking area. Finding a space for their vehicle can take a lot of time and effort, leading to late arrival for work. On the other hand, security guards have difficulty entering their employees' cars. In this context, our proposed system attempts to address this pressing issue, which consists of two parts: one is a camera at the parking gate that recognizes the license plate using the Automatic Number Plate Recognition (ANPR) algorithm, where the camera captures the license plate and outputs the plate number using the optical character recognition (OCR) technique. After that, the resulting data is cross-referenced with database records for seamless entry authentication. This eliminates the need for security personnel to verify vehicle identities or stickers manually, streamlining access procedures. The second part is a camera in the car parks that distinguishes between vacant and available parking spaces and stores the data collected by the camera in the centralized database, enabling the real-time display of the nearest available parking spots on digital screens at entrance gates, significantly reducing the time and effort spent in locating parking spaces. Through this innovative solution, we aim to enhance urban mobility and alleviate the challenges associated with urban parking congestion, thereby resolving the problem of intelligent parking for smart cities with the help of machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FMK完成签到 ,获得积分10
刚刚
3秒前
无语的钢铁侠完成签到,获得积分10
3秒前
4秒前
kaka091完成签到,获得积分10
4秒前
顺顺顺发布了新的文献求助30
4秒前
郭一完成签到,获得积分10
5秒前
行路1完成签到 ,获得积分10
5秒前
蹦蹦完成签到 ,获得积分20
6秒前
做科研的小丸子完成签到,获得积分10
6秒前
7秒前
悲惨雪糕W发布了新的文献求助10
7秒前
mint发布了新的文献求助10
8秒前
凡凡发布了新的文献求助10
9秒前
许七安发布了新的文献求助10
9秒前
10秒前
宇文安寒完成签到,获得积分10
10秒前
xzf1996完成签到,获得积分10
11秒前
小花花发布了新的文献求助10
11秒前
11秒前
13秒前
DANTE发布了新的文献求助10
14秒前
Accepted应助小稻草人采纳,获得10
17秒前
hhw完成签到,获得积分10
17秒前
小花花完成签到,获得积分10
17秒前
爆米花应助一勺采纳,获得10
19秒前
清a发布了新的文献求助10
20秒前
23秒前
25秒前
钟容完成签到,获得积分10
26秒前
所所应助cjh采纳,获得10
28秒前
29秒前
29秒前
李庆给李庆的求助进行了留言
30秒前
Xin完成签到,获得积分10
30秒前
丘比特应助阿白采纳,获得10
30秒前
Owen应助静默向上采纳,获得30
31秒前
ookeah发布了新的文献求助10
32秒前
细细完成签到,获得积分10
32秒前
小马甲应助DANTE采纳,获得10
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462453
求助须知:如何正确求助?哪些是违规求助? 3056020
关于积分的说明 9050191
捐赠科研通 2745593
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696123
邀请新用户注册赠送积分活动 695633