Synthetic biology and artificial intelligence in crop improvement

合成生物学 作物 人工智能 生物 计算机科学 农学 计算生物学
作者
Dawei Zhang,Fan Xu,Fei Wang,Liang Le,Li Pu
出处
期刊:Plant communications [Elsevier]
卷期号:: 101220-101220 被引量:23
标识
DOI:10.1016/j.xplc.2024.101220
摘要

Synthetic biology (SynBio) plays a pivotal role in improving crop traits and increasing bioproduction by using engineering principles that purposefully modify plants through "design, build, test and learn" cycles, ultimately resulting in improved bioproduction based on input genetic circuit (DNA, RNA, and Proteins). Crop synthetic biology is new tool following circular principles to redesign and create innovative biological components, devices, and systems to enhance yields, nutrient absorption, resilience, and nutritional quality. In the digital age, artificial intelligence (AI) has demonstrated great significance in the design and learning. The application of AI has become an irreversible trend, with its potential in the field of crop breeding being particularly remarkable. However, a systematic review of AI-driven synthetic biology pathways for plant engineering is lacking. In this review, we explore the fundamental engineering principles employed in crop synthetic biology and their applications in crop improvement. The approaches to genetic circuit design include gene editing, synthetic nucleic acid and protein technologies, multi-omics analysis, genomic selection, directed protein engineering and AI. We then outline strategies for developing crops with higher photosynthetic efficiency, reshaped plant architecture, modified crop metabolic pathways, improved environmental adaptability and nutrient absorption, establishing trait networks, and constructing crop factories. Additionally, we propose the development of Self-Monitoring, Adapted, and Responsive Technology (SMART) crops through AI-empowered synthetic biotechnology. Moreover, we address the challenges associated with synthetic biology development and present potential solutions for crop improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
588发布了新的文献求助10
1秒前
三杠发布了新的文献求助10
1秒前
2秒前
李小晴天发布了新的文献求助10
4秒前
刘雪磊完成签到,获得积分20
5秒前
5秒前
SciGPT应助nwds采纳,获得10
6秒前
咦yiyi发布了新的文献求助100
8秒前
8秒前
大模型应助坚定灭绝采纳,获得10
9秒前
aaa发布了新的文献求助10
11秒前
自然雁风完成签到,获得积分10
12秒前
我是老大应助百事可乐采纳,获得10
13秒前
健忘捕发布了新的文献求助10
13秒前
Liu_cx完成签到,获得积分10
14秒前
16秒前
17秒前
林新宇完成签到,获得积分10
17秒前
17秒前
OYYO发布了新的文献求助30
17秒前
科研小新发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
李小颜完成签到,获得积分10
23秒前
李健的小迷弟应助东哥采纳,获得10
23秒前
23秒前
刘雪磊发布了新的文献求助10
23秒前
24秒前
25秒前
迷人雪卉完成签到 ,获得积分10
26秒前
VDC发布了新的文献求助10
26秒前
27秒前
杆杆发布了新的文献求助10
27秒前
付一鸣发布了新的文献求助10
28秒前
28秒前
橙橙吖完成签到,获得积分20
30秒前
30秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502002
求助须知:如何正确求助?哪些是违规求助? 4598010
关于积分的说明 14462250
捐赠科研通 4531639
什么是DOI,文献DOI怎么找? 2483444
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496