A novel analytical tool for complex propagation processes in networks: High-order dynamic equation

复杂网络 传输(电信) 计算机科学 节点(物理) 过程(计算) 动态网络分析 订单(交换) 领域(数学) 简单(哲学) 机制(生物学) 复杂系统 分布式计算 集合(抽象数据类型) 路径(计算) 人工智能 工程类 电信 数学 计算机网络 物理 财务 经济 哲学 结构工程 认识论 量子力学 万维网 纯数学 程序设计语言 操作系统
作者
Jiahui Song,Zaiwu Gong
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (12)
标识
DOI:10.1063/5.0223566
摘要

Controlling the spread of epidemics in complex networks has always been an important research problem in the field of network science and has been widely studied by many scholars so far. One of the key problems in the transmission process of epidemics in complex networks is the transmission mechanism. At present, the transmission mechanism in complex networks can be divided into simple transmission and complex transmission. Simple transmission has been widely studied and the theory is relatively mature, while complex transmission still has many questions to answer. In fact, in the complex transmission process, the higher-order structure of the network plays a very important role, which can affect the transmission speed, final scale, and transmission path of the epidemic by strengthening the mechanism. However, due to the lack of complex dynamic analysis tools, the measurement of influence on propagation is still at the low-dimensional node level. Therefore, in this paper, we propose a set of closed dynamic higher-order structure equations to gain insight into the complex propagation process in the network, which breaks the inherent thinking and enables us to reexamine the complex dynamic behavior more clearly from the higher-order level rather than just from the node level, opening up a new way to analyze the higher-order interaction on the dynamic network. We apply the proposed high-order dynamic equations to a complex susceptible-infection-recovery epidemiological model on two real and synthetic networks, and extensive numerical simulation results demonstrate the effectiveness of the proposed approach. Our research results help to deepen the understanding of the relationship between complex propagation mechanisms and higher-order structures and develop a complete set of complex dynamic analysis tools that can be extended to higher-order forms to help in-depth understanding of the propagation rules and mechanisms in complex propagation processes, providing an important theoretical basis for predicting, analyzing, and controlling complex propagation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟冬卉完成签到,获得积分10
2秒前
彭于晏应助zhai采纳,获得10
2秒前
NexusExplorer应助刘先生采纳,获得10
3秒前
青花菜鱼得啦完成签到 ,获得积分10
3秒前
5秒前
5秒前
5秒前
7秒前
xiaozheng发布了新的文献求助10
9秒前
10秒前
云月林生完成签到,获得积分10
10秒前
ally完成签到,获得积分10
11秒前
这这发布了新的文献求助50
11秒前
12秒前
桐桐应助leslie花花采纳,获得10
13秒前
14秒前
沐青应助青花菜鱼得啦采纳,获得30
16秒前
岁月如酒完成签到,获得积分10
16秒前
赘婿应助香菜芋头采纳,获得10
17秒前
欧阳正义发布了新的文献求助10
17秒前
刘先生发布了新的文献求助10
18秒前
愉快的老三完成签到,获得积分10
21秒前
爱与感谢完成签到 ,获得积分10
22秒前
顺利书翠完成签到,获得积分10
23秒前
23秒前
24秒前
26秒前
秋枫忆发布了新的文献求助10
26秒前
顺利书翠发布了新的文献求助10
26秒前
爆米花应助刘先生采纳,获得10
28秒前
29秒前
30秒前
111咩咩发布了新的文献求助30
31秒前
清风发布了新的文献求助10
33秒前
JamesPei应助WWWUBING采纳,获得10
34秒前
清爽乐菱应助zxy采纳,获得10
38秒前
sxwzssyj完成签到,获得积分10
38秒前
39秒前
40秒前
sxwzssyj发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498