亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-stage deep reinforcement learning method for agile optical satellite scheduling problem

强化学习 敏捷软件开发 阶段(地层学) 计算机科学 调度(生产过程) 卫星 人工智能 钢筋 计算智能 运筹学 工业工程 工程类 航空航天工程 运营管理 地质学 软件工程 结构工程 古生物学
作者
Zheng Liu,Wei Xiong,Zhuoya Jia,Chi Han
出处
期刊:Complex & Intelligent Systems 卷期号:11 (1)
标识
DOI:10.1007/s40747-024-01667-x
摘要

This paper investigates the agile optical satellite scheduling problem, which aims to arrange an observation sequence and observation actions for observation tasks. Existing research mainly aims to maximize the number of completed tasks or the total priorities of the completed tasks but ignores the influence of the observation actions on the imaging quality. Besides, the conventional exact methods and heuristic methods can hardly obtain a high-quality solution in a short time due to the complicated constraints and considerable solution space of this problem. Thus, this paper proposes a two-stage scheduling framework with two-stage deep reinforcement learning to address this problem. First, the scheduling process is decomposed into a task sequencing stage and an observation scheduling stage, and a mathematical model with complex constraints and two-stage optimization objectives is established to describe the problem. Then, a pointer network with a local selection mechanism and a rough pruning mechanism is constructed as the sequencing network to generate an executable task sequence in the task sequencing stage. Next, a decomposition strategy decomposes the executable task sequence into multiple sub-sequences in the observation scheduling stage, and the observation scheduling process of these sub-sequences is modeled as a concatenated Markov decision process. A neural network is designed as the observation scheduling network to determine observation actions for the sequenced tasks, which is well trained by the soft actor-critic algorithm. Finally, extensive experiments show that the proposed method, along with the designed mechanisms and strategy, is superior to comparison algorithms in terms of solution quality, generalization performance, and computation efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shl发布了新的文献求助10
2秒前
Nanqi完成签到 ,获得积分10
3秒前
独徙完成签到 ,获得积分10
6秒前
欣喜的人龙完成签到 ,获得积分10
11秒前
笨笨的怜雪完成签到 ,获得积分10
25秒前
rainbow完成签到 ,获得积分0
29秒前
Magali应助Zooey旎旎采纳,获得20
30秒前
FashionBoy应助梦华老师采纳,获得10
31秒前
怕黑行恶完成签到,获得积分10
33秒前
小二郎应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
慕青应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
完美世界应助seven采纳,获得10
41秒前
47秒前
51秒前
龙哥哥Antony完成签到,获得积分10
57秒前
隐形曼青应助沉默的早晨采纳,获得10
1分钟前
大媛媛完成签到,获得积分10
1分钟前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
柏白筠发布了新的文献求助10
1分钟前
沉默的早晨完成签到,获得积分10
1分钟前
震动的修洁完成签到 ,获得积分10
1分钟前
1分钟前
酷酷问夏完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦仙人掌完成签到,获得积分20
1分钟前
孙远欣发布了新的文献求助10
1分钟前
1分钟前
人类不宜飞行完成签到 ,获得积分10
1分钟前
阳光问安完成签到 ,获得积分10
1分钟前
Hello应助瘦瘦仙人掌采纳,获得10
1分钟前
1分钟前
seven发布了新的文献求助10
1分钟前
Jasper应助穿裤子的云采纳,获得50
1分钟前
SciGPT应助梦华老师采纳,获得10
1分钟前
大个应助孙远欣采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544380
求助须知:如何正确求助?哪些是违规求助? 3121574
关于积分的说明 9347880
捐赠科研通 2819813
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273