材料科学
可逆氢电极
电催化剂
氧化物
电化学
钙钛矿(结构)
化学工程
无机化学
纳米技术
电极
物理化学
化学
参比电极
工程类
冶金
作者
Cun Chen,Xu Zhen,Guangtong Hai,Wei‐Hsiang Huang,Chih‐Wen Pao,Hanjun Li,Kezhu Jiang,Nan Zhang,Tianxi Liu
出处
期刊:Small
[Wiley]
日期:2024-11-06
被引量:1
标识
DOI:10.1002/smll.202407964
摘要
Abstract High‐entropy perovskite oxides exhibit promising application prospects in the field of electrocatalysis, owing to their flexible elemental composition, plentiful active sites, and superior structural stability. Herein, high‐entropy perovskite oxide nanotubes are prepared with La, Nd, Pr, Er, Eu at A‐site by electrospinning as efficient electrocatalysts for nitrate reduction reaction (NO 3 RR). Electrochemical tests demonstrate that LaNd 0.25 Pr 0.25 Er 0.25 Eu 0.25 CuO 4 nanotubes (LNPEEC NTs) display outstanding NO 3 RR performance, achieving a NH 3 Faraday efficiency (FE NH3 ) of 100% at −0.7 V versus reversible hydrogen electrode (RHE) and a yield rate NH3 of 1378 µg h −1 mg −1 cat. at −1.0 V RHE , outperforming Nd 2 CuO 4 nanotubes (NC NTs). Furthermore, LNPEEC NTs also exhibit excellent stability even after 10 cycles at −0.7 V RHE and −1.0 V RHE . X‐ray absorption spectroscopy confirms that multi‐component regulation of A‐site optimizes the coordination environment of Cu at B‐site, increasing the unsaturated Cu sites and thus providing more active sites. Additionally, density functional theory calculations reveal that the doping of multi‐component rare‐earth elements at A‐site in LNPEEC NTs modulates the d‐band center of Cu at B‐site and reduces the reaction energy barrier of the rate‐determining step, thus enhancing the adsorption of NO 3 − and promoting the NO 3 RR performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI