Enhancement of the Performance of Large Language Models in Diabetes Education through Retrieval-Augmented Generation: Comparative Study (Preprint)

预印本 计算机科学 自然语言处理 人工智能 情报检索 万维网
作者
Dingqiao Wang,J. K. Liang,Jinguo Ye,Jingni Li,J Li,Qikai Zhang,Qiuling Hu,Caineng Pan,Dongliang Wang,Z Y Liu,Wen Shi,Danli Shi,Fei Li,Bo Qu,Yingfeng Zheng
标识
DOI:10.2196/preprints.58041
摘要

BACKGROUND Large language models (LLMs) demonstrated advanced performance in processing clinical information. However, commercially available LLMs lack specialized medical knowledge and remain susceptible to generating inaccurate information. Given the need for self-management in diabetes, patients commonly seek information online. We introduce the Retrieval-augmented Information System for Enhancement (RISE) framework and evaluate its performance in enhancing LLMs to provide accurate responses to diabetes-related inquiries. OBJECTIVE This study aimed to evaluate the potential of the RISE framework, an information retrieval and augmentation tool, to improve the LLM’s performance to accurately and safely respond to diabetes-related inquiries. METHODS The RISE, an innovative retrieval augmentation framework, comprises 4 steps: rewriting query, information retrieval, summarization, and execution. Using a set of 43 common diabetes-related questions, we evaluated 3 base LLMs (GPT-4, Anthropic Claude 2, Google Bard) and their RISE-enhanced versions respectively. Assessments were conducted by clinicians for accuracy and comprehensiveness and by patients for understandability. RESULTS The integration of RISE significantly improved the accuracy and comprehensiveness of responses from all 3 base LLMs. On average, the percentage of accurate responses increased by 12% (15/129) with RISE. Specifically, the rates of accurate responses increased by 7% (3/43) for GPT-4, 19% (8/43) for Claude 2, and 9% (4/43) for Google Bard. The framework also enhanced response comprehensiveness, with mean scores improving by 0.44 (SD 0.10). Understandability was also enhanced by 0.19 (SD 0.13) on average. Data collection was conducted from September 30, 2023 to February 5, 2024. CONCLUSIONS The RISE significantly improves LLMs’ performance in responding to diabetes-related inquiries, enhancing accuracy, comprehensiveness, and understandability. These improvements have crucial implications for RISE’s future role in patient education and chronic illness self-management, which contributes to relieving medical resource pressures and raising public awareness of medical knowledge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
吲哚并咔唑应助刘杨梓采纳,获得10
4秒前
领导范儿应助baobao采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
研友_8DAv0L发布了新的文献求助20
8秒前
Passskd发布了新的文献求助80
9秒前
9秒前
Ava应助呆萌芙蓉采纳,获得10
9秒前
在远方发布了新的文献求助10
10秒前
菠萝菠萝哒应助含章采纳,获得10
11秒前
cyskdsn发布了新的文献求助10
12秒前
杨震发布了新的文献求助30
13秒前
乐乐应助搞怪的芷云采纳,获得10
13秒前
乖拉发布了新的文献求助20
13秒前
寂寞的湘发布了新的文献求助50
14秒前
14秒前
大家好完成签到 ,获得积分10
14秒前
zhangmy1989发布了新的文献求助10
14秒前
15秒前
16秒前
缓慢洋葱完成签到 ,获得积分10
18秒前
cocolu举报甄开心求助涉嫌违规
18秒前
lllzz发布了新的文献求助10
20秒前
20秒前
可爱的函函应助沉默的婴采纳,获得10
20秒前
zyvl发布了新的文献求助30
21秒前
baobao发布了新的文献求助10
22秒前
22秒前
邓大卫完成签到,获得积分10
22秒前
CodeCraft应助杨枝甘露采纳,获得10
22秒前
称心的青旋完成签到,获得积分10
23秒前
zy完成签到,获得积分10
26秒前
26秒前
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343504
求助须知:如何正确求助?哪些是违规求助? 2970547
关于积分的说明 8644499
捐赠科研通 2650612
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661545