Advancing COVID-19 Treatment: The Role of Non-covalent Inhibitors Unveiled by Integrated Machine Learning and Network Pharmacology

计算生物学 药物重新定位 可药性 赫尔格 药物发现 2019年冠状病毒病(COVID-19) 对接(动物) 药理学 生物 计算机科学 生物信息学 医学 药品 传染病(医学专业) 生物化学 疾病 生物物理学 钾通道 基因 病理 护理部
作者
Shayan Qadir,Fahad M. Alshabrmi,Faris F. Aba Alkhayl,Aqsa Muzammil,Snehpreet Kaur,Abdur Rehman
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:31
标识
DOI:10.2174/0113816128342951241210175314
摘要

Introduction: The COVID-19 pandemic has necessitated rapid advancements in therapeutic discovery. This study presents an integrated approach combining machine learning (ML) and network pharmacology to identify potential non-covalent inhibitors against pivotal proteins in COVID-19 pathogenesis, specifically B-cell lymphoma 2 (BCL2) and Epidermal Growth Factor Receptor (EGFR). Method: Employing a dataset of 13,107 compounds, ML algorithms such as k-Nearest Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes (NB) were utilized for screening and predicting active inhibitors based on molecular features. Molecular docking and molecular dynamics simulations, conducted over a 100 nanosecond period, enhanced the ML-based screening by providing insights into the binding affinities and interaction dynamics with BCL2 and EGFR. Network pharmacology analysis identified these proteins as hub targets within the COVID-19 protein-protein interaction network, highlighting their roles in apoptosis regulation and cellular signaling. Results: The identified inhibitors exhibited strong binding affinities, suggesting potential efficacy in disrupting viral life cycles and impeding disease progression. Comparative analysis with existing literature affirmed the relevance of BCL2 and EGFR in COVID-19 therapy and underscored the novelty of integrating network pharmacology with ML. This multidisciplinary approach establishes a framework for emerging pathogen treatments and advocates for subsequent in vitro and in vivo validation, emphasizing a multi-targeted drug design strategy against viral adaptability. Conclusion: This study's findings are crucial for the ongoing development of therapeutic agents against COVID-19, leveraging computational and network-based strategies. conclusion: This multidisciplinary approach establishes a framework for emerging pathogen treatments and advocates for subsequent in vitro and in vivo validation. The findings emphasize a multi-targeted drug design strategy against viral adaptability, contributing significantly to the ongoing development of therapeutic agents against COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xcy完成签到,获得积分10
刚刚
1秒前
科研通AI5应助冷静烤鸡采纳,获得10
2秒前
小超人完成签到,获得积分10
2秒前
小薯条完成签到,获得积分10
3秒前
狂看文献发布了新的文献求助10
3秒前
5秒前
清风完成签到 ,获得积分10
5秒前
zwwww发布了新的文献求助10
6秒前
科研小民工给A_Caterpillar的求助进行了留言
7秒前
7秒前
7秒前
111完成签到 ,获得积分10
7秒前
向天歌发布了新的文献求助20
9秒前
JUSTDOIT完成签到,获得积分10
9秒前
bkagyin应助阳光的豁采纳,获得10
12秒前
一只盒子完成签到 ,获得积分10
13秒前
橙汁完成签到,获得积分10
13秒前
JUSTDOIT发布了新的文献求助10
13秒前
13秒前
FashionBoy应助liu采纳,获得10
16秒前
Hello应助汤姆猫采纳,获得10
16秒前
yx发布了新的文献求助10
18秒前
Lionnn发布了新的文献求助10
18秒前
18秒前
justin完成签到,获得积分10
21秒前
25秒前
Tuesday完成签到 ,获得积分10
26秒前
张烤明完成签到,获得积分10
27秒前
威武皮带完成签到,获得积分10
27秒前
29秒前
cheert完成签到 ,获得积分10
29秒前
淡淡紫山完成签到,获得积分10
30秒前
31秒前
liu发布了新的文献求助10
32秒前
13333发布了新的文献求助10
34秒前
小二郎应助青果采纳,获得10
34秒前
34秒前
42秒前
laber应助山有扶苏采纳,获得30
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737279
求助须知:如何正确求助?哪些是违规求助? 3281146
关于积分的说明 10023095
捐赠科研通 2997818
什么是DOI,文献DOI怎么找? 1644858
邀请新用户注册赠送积分活动 782224
科研通“疑难数据库(出版商)”最低求助积分说明 749717