材料科学
紫外线
光电子学
极化(电化学)
多波段设备
可见光谱
对偶(语法数字)
光学
纳米技术
电信
物理
艺术
化学
文学类
物理化学
计算机科学
天线(收音机)
作者
Naureen Butt,Joohoon Kim,Nasir Mahmood,Yujin Park,Do-Hyun Kang,Dongliang Gao,Muhammad Zubair,Tauseef Tauqeer,Muhammad Qasim Mehmood,Lei Gao,Junsuk Rho
标识
DOI:10.1002/adfm.202410512
摘要
Abstract Metasurfaces have emerged as a rapidly advancing technology enabling easy‐to‐integrate planar photonic devices, owing to their exceptional control of light‐matter interaction at a subwavelength scale. They offer unique optical functionalities for various applications, including medical imaging. Despite their early successes, fixed capabilities and narrow operational bandwidths limit their integration into advanced chip‐scale photonic systems. Addressing the need for ultra‐compact, high‐performance UV–Vis imaging tools in microscopic and bio‐imaging, a band gap‐engineered silicon nitride‐based polarization‐controlled, single‐cell‐driven, dual‐band (UV–Vis) all‐dielectric imaging platform is developed. This platform integrates multiple optical effects through a single metasurface, utilizing the spatial symmetry of localized fields within the nanoresonator. This design leverages the holographic principle and polarization decoupling effect to simplify the complexity of broadband/dual‐band metasurfaces. To validate the design, a multifunctional metalens, and a meta‐vortex plate, demonstrating efficient structuring of UV–Vis light, is developed. Supported by rigorous numerical and experimental investigations, this work marks a significant advancement in UV–Vis imaging technologies, setting a new standard for medical diagnosis, disease prognosis, and clinical technology innovation. It is envisioned that broadband, multifunctional imaging devices are becoming a next‐generation platform across interdisciplinary frontiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI