材料科学
石墨烯
拉曼光谱
纳米技术
低频
光电子学
复合材料
光学
电信
物理
计算机科学
作者
Shiqi Yang,Xu Han,Yang Qin,Jiahao Yan,Zihao Guo,Yehua Yang,Tongtong Xue,Jiakai Wang,Jinghan Zhao,Xinyu Shi,Ming Lei,Jun Zhang,Qinghua Zhang,Miao‐Ling Lin,Liwei Liu,Ping‐Heng Tan,Xia Liu,Yunyun Dai,Yeliang Wang,Yuan Huang
标识
DOI:10.1021/acsami.4c22050
摘要
Graphene nanoscrolls (GNSs) are unique structures with interlayer coupling modes distinct from those in graphene and carbon nanotubes, exhibiting potential physical properties yet to be explored. Here we investigated the low-frequency Raman modes in GNSs formed from 1 to 3 layer graphene (1–3LG). The results of the Raman spectroscopy show that both shear (C) and layer breathing (LB) modes have appeared in monolayer graphene nanoscrolls (1L-GNSs), although these modes never exist in the flat 1LG. Remarkably, both 2L- and 3L-GNSs exhibited multiple low-frequency modes linked to other layer numbers, revealing the emergence of additional interlayer coupling. Annealing significantly enhanced low-frequency Raman signals and introduced additional modes, with the C21 mode intensity increasing nearly 3-fold and LBM61 intensity rising 16-fold. Transmission electron microscopy (TEM) imaging showed reduced ∼0.3 Å interlayer spacing after annealing, indicating stronger interlayer coupling. This work provides important scientific evidence for understanding the interlayer coupling in GNSs.
科研通智能强力驱动
Strongly Powered by AbleSci AI