Predicting the Reparability of Rotator Cuff Tears: Machine Learning and Comparison With Previous Scoring Systems

肩袖 接收机工作特性 医学 逻辑回归 计分系统 眼泪 机器学习 试验装置 人工智能 集合(抽象数据类型) 计算机科学 外科 程序设计语言
作者
Woo Jung Sung,Seung-Hwan Shin,Joon‐Ryul Lim,Tae‐Hwan Yoon,Yong‐Min Chun
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:52 (14): 3512-3519
标识
DOI:10.1177/03635465241287527
摘要

Background: Repair of rotator cuff tear is not always feasible, depending on the severity. Although several studies have investigated factors related to reparability and various methods to predict it, inconsistent scoring methods and a lack of validation have hindered the utility of these methods. Purpose: To develop machine learning models to predict the reparability of rotator cuff tears, compare them with previous scoring systems, and provide an accessible online model. Study Design: Cohort study; Level of evidence, 3. Methods: Arthroscopic rotator cuff repairs for tears with both anteroposterior and mediolateral diameters >1 cm on preoperative magnetic resonance imaging were included and divided into a training set (70%) and an internal validation set (30%). For external validation, rotator cuff repairs performed by 2 different surgeons were included in a test set. Machine learning models and a newly adjusted scoring system were developed using the training set. The performance of the models including the adjusted scoring system and 2 previous scoring systems were compared using the test set. The performance was assessed using metrics such as the area under the receiver operating characteristic curve (AUROC) and compared using the net reclassification improvement based on the adjusted scoring system. Results: A total of 429 patients were included for the training and internal validation set, and 112 patients were included for the test set. An elastic-net logistic regression demonstrated the best performance, with an AUROC of 0.847 and net reclassification improvement of 0.071, compared with the adjusted scoring system in the test set. The AUROC of the adjusted scoring system was 0.786, and the AUROCs of the previous scoring systems were 0.757 and 0.687. The elastic-net logistic regression was transformed into an accessible online model. Conclusion: The performance of the machine learning model, which provides a probability estimation for rotator cuff reparability, is comparable with that of the adjusted scoring system. Nevertheless, when deploying prediction models beyond the original cohort, regardless of whether they rely on machine learning or scoring systems, clinicians should exercise caution and not rely solely on the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riki完成签到,获得积分10
1秒前
虚幻白玉发布了新的文献求助10
1秒前
德行天下完成签到,获得积分10
1秒前
Jenny应助lan采纳,获得10
2秒前
fztnh完成签到,获得积分10
2秒前
上官若男应助lyz666采纳,获得10
2秒前
顾念完成签到 ,获得积分10
2秒前
277发布了新的文献求助10
3秒前
小二郎应助GCD采纳,获得10
4秒前
hhhhhh完成签到 ,获得积分10
4秒前
甜味拾荒者完成签到,获得积分10
6秒前
小二郎应助BONBON采纳,获得10
6秒前
7秒前
charllie完成签到 ,获得积分10
7秒前
空禅yew完成签到,获得积分10
8秒前
坚强亦丝应助跳跃采纳,获得10
10秒前
英俊的铭应助cc采纳,获得10
10秒前
huangsan完成签到,获得积分10
10秒前
匹诺曹完成签到,获得积分10
10秒前
11秒前
华仔应助进取拼搏采纳,获得10
11秒前
12秒前
dingdong发布了新的文献求助10
12秒前
you完成签到 ,获得积分10
13秒前
qwf完成签到 ,获得积分10
13秒前
14秒前
万能图书馆应助一一采纳,获得10
14秒前
执着跳跳糖完成签到 ,获得积分10
15秒前
阳yang完成签到,获得积分10
15秒前
牛头人完成签到,获得积分10
15秒前
16秒前
Rrr发布了新的文献求助10
16秒前
17秒前
17秒前
serenity完成签到 ,获得积分10
17秒前
Benliu完成签到,获得积分10
17秒前
csq发布了新的文献求助10
18秒前
19秒前
Hello应助外向的醉易采纳,获得10
19秒前
DWWWDAADAD完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808