Predicting the Reparability of Rotator Cuff Tears: Machine Learning and Comparison With Previous Scoring Systems

肩袖 接收机工作特性 医学 逻辑回归 计分系统 眼泪 机器学习 试验装置 人工智能 集合(抽象数据类型) 计算机科学 外科 程序设计语言
作者
Woo Jung Sung,Seung-Hwan Shin,Joon‐Ryul Lim,Tae‐Hwan Yoon,Yong‐Min Chun
出处
期刊:American Journal of Sports Medicine [SAGE Publishing]
卷期号:52 (14): 3512-3519
标识
DOI:10.1177/03635465241287527
摘要

Background: Repair of rotator cuff tear is not always feasible, depending on the severity. Although several studies have investigated factors related to reparability and various methods to predict it, inconsistent scoring methods and a lack of validation have hindered the utility of these methods. Purpose: To develop machine learning models to predict the reparability of rotator cuff tears, compare them with previous scoring systems, and provide an accessible online model. Study Design: Cohort study; Level of evidence, 3. Methods: Arthroscopic rotator cuff repairs for tears with both anteroposterior and mediolateral diameters >1 cm on preoperative magnetic resonance imaging were included and divided into a training set (70%) and an internal validation set (30%). For external validation, rotator cuff repairs performed by 2 different surgeons were included in a test set. Machine learning models and a newly adjusted scoring system were developed using the training set. The performance of the models including the adjusted scoring system and 2 previous scoring systems were compared using the test set. The performance was assessed using metrics such as the area under the receiver operating characteristic curve (AUROC) and compared using the net reclassification improvement based on the adjusted scoring system. Results: A total of 429 patients were included for the training and internal validation set, and 112 patients were included for the test set. An elastic-net logistic regression demonstrated the best performance, with an AUROC of 0.847 and net reclassification improvement of 0.071, compared with the adjusted scoring system in the test set. The AUROC of the adjusted scoring system was 0.786, and the AUROCs of the previous scoring systems were 0.757 and 0.687. The elastic-net logistic regression was transformed into an accessible online model. Conclusion: The performance of the machine learning model, which provides a probability estimation for rotator cuff reparability, is comparable with that of the adjusted scoring system. Nevertheless, when deploying prediction models beyond the original cohort, regardless of whether they rely on machine learning or scoring systems, clinicians should exercise caution and not rely solely on the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yfvonne完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
yxy发布了新的文献求助10
3秒前
益生菌发布了新的文献求助10
3秒前
踏实的酸奶完成签到,获得积分10
3秒前
Coldpal完成签到,获得积分10
3秒前
虎啊虎啊发布了新的文献求助10
3秒前
ljl完成签到,获得积分10
3秒前
lalala完成签到,获得积分20
3秒前
ybb完成签到,获得积分10
3秒前
球球了完成签到,获得积分10
4秒前
青易发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
小海发布了新的文献求助10
5秒前
joysa完成签到,获得积分10
6秒前
Jasper应助余生采纳,获得10
6秒前
yiyi完成签到,获得积分10
6秒前
Georges-09完成签到,获得积分10
6秒前
爱因斯宣发布了新的文献求助10
6秒前
谦让的莆完成签到 ,获得积分10
7秒前
7秒前
苏silence发布了新的文献求助10
8秒前
8秒前
科研小土豆完成签到,获得积分10
10秒前
小金鱼儿完成签到,获得积分10
10秒前
Danielle完成签到,获得积分10
10秒前
Paddi完成签到,获得积分10
11秒前
11秒前
Sxq完成签到,获得积分10
11秒前
liuhuo完成签到,获得积分10
11秒前
虎啊虎啊完成签到,获得积分10
11秒前
小海完成签到,获得积分10
12秒前
思源应助任冰冰采纳,获得30
12秒前
完美的凡灵完成签到,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582