Predicting the Reparability of Rotator Cuff Tears: Machine Learning and Comparison With Previous Scoring Systems

肩袖 接收机工作特性 医学 逻辑回归 计分系统 眼泪 机器学习 试验装置 人工智能 集合(抽象数据类型) 计算机科学 外科 程序设计语言
作者
Woo Jung Sung,Seung-Hwan Shin,Joon‐Ryul Lim,Tae‐Hwan Yoon,Yong‐Min Chun
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:52 (14): 3512-3519
标识
DOI:10.1177/03635465241287527
摘要

Background: Repair of rotator cuff tear is not always feasible, depending on the severity. Although several studies have investigated factors related to reparability and various methods to predict it, inconsistent scoring methods and a lack of validation have hindered the utility of these methods. Purpose: To develop machine learning models to predict the reparability of rotator cuff tears, compare them with previous scoring systems, and provide an accessible online model. Study Design: Cohort study; Level of evidence, 3. Methods: Arthroscopic rotator cuff repairs for tears with both anteroposterior and mediolateral diameters >1 cm on preoperative magnetic resonance imaging were included and divided into a training set (70%) and an internal validation set (30%). For external validation, rotator cuff repairs performed by 2 different surgeons were included in a test set. Machine learning models and a newly adjusted scoring system were developed using the training set. The performance of the models including the adjusted scoring system and 2 previous scoring systems were compared using the test set. The performance was assessed using metrics such as the area under the receiver operating characteristic curve (AUROC) and compared using the net reclassification improvement based on the adjusted scoring system. Results: A total of 429 patients were included for the training and internal validation set, and 112 patients were included for the test set. An elastic-net logistic regression demonstrated the best performance, with an AUROC of 0.847 and net reclassification improvement of 0.071, compared with the adjusted scoring system in the test set. The AUROC of the adjusted scoring system was 0.786, and the AUROCs of the previous scoring systems were 0.757 and 0.687. The elastic-net logistic regression was transformed into an accessible online model. Conclusion: The performance of the machine learning model, which provides a probability estimation for rotator cuff reparability, is comparable with that of the adjusted scoring system. Nevertheless, when deploying prediction models beyond the original cohort, regardless of whether they rely on machine learning or scoring systems, clinicians should exercise caution and not rely solely on the output of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dachengzi发布了新的文献求助10
2秒前
Sharyn227发布了新的文献求助10
3秒前
4秒前
眼睛大鹤发布了新的文献求助10
7秒前
香蕉觅云应助chunyan_sysu采纳,获得10
7秒前
liu完成签到 ,获得积分10
9秒前
晚安鸭箫晓完成签到 ,获得积分10
9秒前
科研通AI2S应助活泼的飞双采纳,获得10
9秒前
JIANG发布了新的文献求助30
10秒前
10秒前
chai发布了新的文献求助10
11秒前
吉祥完成签到,获得积分10
12秒前
12秒前
所所应助眼睛大鹤采纳,获得10
13秒前
14秒前
9527z发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
温友儿发布了新的文献求助20
20秒前
怅神霄而避光完成签到,获得积分10
22秒前
小回发布了新的文献求助10
23秒前
142857发布了新的文献求助10
23秒前
23秒前
JIANG完成签到,获得积分10
24秒前
小红帽发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
27秒前
万能图书馆应助止心所至采纳,获得10
27秒前
可爱的柜子应助Sharyn227采纳,获得10
29秒前
ozy发布了新的文献求助10
29秒前
周周发布了新的文献求助10
29秒前
30秒前
汪汪别吃了完成签到 ,获得积分10
30秒前
普通人发布了新的文献求助10
31秒前
yayabing完成签到,获得积分10
32秒前
英俊的铭应助年轻的吐司采纳,获得10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302