Performance of Individual Tree Segmentation Algorithms in Forest Ecosystems Using UAV LiDAR Data

激光雷达 分割 树(集合论) 生态系统 森林生态学 计算机科学 遥感 环境科学 人工智能 算法 地理 生态学 数学 生物 数学分析
作者
Javier Marcello,Márcio Spínola,Laia Albors,Ferran Marqués,Dionisio Rodríguez‐Esparragón,Francisco Eugenio
出处
期刊:Drones [MDPI AG]
卷期号:8 (12): 772-772
标识
DOI:10.3390/drones8120772
摘要

Forests are crucial for biodiversity, climate regulation, and hydrological cycles, requiring sustainable management due to threats like deforestation and climate change. Traditional forest monitoring methods are labor-intensive and limited, whereas UAV LiDAR offers detailed three-dimensional data on forest structure and extensive coverage. This study primarily assesses individual tree segmentation algorithms in two forest ecosystems with different levels of complexity using high-density LiDAR data captured by the Zenmuse L1 sensor on a DJI Matrice 300RTK platform. The processing methodology for LiDAR data includes preliminary preprocessing steps to create Digital Elevation Models, Digital Surface Models, and Canopy Height Models. A comprehensive evaluation of the most effective techniques for classifying ground points in the LiDAR point cloud and deriving accurate models was performed, concluding that the Triangular Irregular Network method is a suitable choice. Subsequently, the segmentation step is applied to enable the analysis of forests at the individual tree level. Segmentation is crucial for monitoring forest health, estimating biomass, and understanding species composition and diversity. However, the selection of the most appropriate segmentation technique remains a hot research topic with a lack of consensus on the optimal approach and metrics to be employed. Therefore, after the review of the state of the art, a comparative assessment of four common segmentation algorithms (Dalponte2016, Silva2016, Watershed, and Li2012) was conducted. Results demonstrated that the Li2012 algorithm, applied to the normalized 3D point cloud, achieved the best performance with an F1-score of 91% and an IoU of 83%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abbbb完成签到 ,获得积分10
刚刚
andy_lee发布了新的文献求助10
2秒前
闪电完成签到,获得积分10
2秒前
CC2333完成签到,获得积分10
2秒前
dongge完成签到,获得积分10
4秒前
5秒前
5秒前
嘿嘿发布了新的文献求助10
5秒前
5秒前
6秒前
Yikami完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
大乐发布了新的文献求助10
7秒前
打打应助默默的采纳,获得10
8秒前
8秒前
liu_hanwen完成签到,获得积分10
8秒前
9秒前
zsl完成签到,获得积分10
9秒前
10秒前
执意完成签到,获得积分10
10秒前
小燕子发布了新的文献求助10
11秒前
研友_VZG7GZ应助zeroayanami0采纳,获得10
11秒前
YSL发布了新的文献求助10
11秒前
听说外面下雨了完成签到,获得积分10
12秒前
luo发布了新的文献求助30
13秒前
dolores完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
无极微光应助甜美帅哥采纳,获得20
16秒前
齐齐发布了新的文献求助10
16秒前
仁爱的酒窝完成签到,获得积分10
17秒前
18秒前
乐乐应助YSL采纳,获得10
19秒前
19秒前
19秒前
大乐完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507223
求助须知:如何正确求助?哪些是违规求助? 4602576
关于积分的说明 14482228
捐赠科研通 4536619
什么是DOI,文献DOI怎么找? 2486284
邀请新用户注册赠送积分活动 1468838
关于科研通互助平台的介绍 1441315