分生组织
拟南芥
拟南芥
乙烯
下调和上调
转录组
转录因子
生物
细胞生物学
基因表达
侧根
化学
基因
生物化学
突变体
催化作用
作者
Wangshu Mou,Ria Khare,Joanna K. Polko,Isaiah Taylor,Juan Xu,Dawei Xue,Philip N. Benfey,Bram Van de Poel,Caren Chang,Joseph J. Kieber
标识
DOI:10.1073/pnas.2417735122
摘要
In seed plants, the canonical role of 1-aminocyclopropane-1-carboxylic acid (ACC) is to serve as the precursor in the biosynthesis of the phytohormone ethylene, and indeed, ACC treatment is often used as a proxy for ethylene treatment. Increasing evidence suggests that ACC can also act independently of ethylene to regulate various aspects of plant growth and development. Here, we explore the effects of ACC on Arabidopsis thaliana root growth and the mechanisms by which it acts. ACC inhibits growth of the primary root in Arabidopsis seedlings when ethylene signaling is blocked, which becomes evident after 36 h of treatment with ACC. This reduced root growth is in part the result of suppressed cell proliferation in the root meristem resulting from altered expression of a key regulator of stem cell niche activity, WOX5. ACC also promotes lateral root (LR) development, in contrast to ethylene, which inhibits LR formation. Transcriptomic analysis of roots revealed no significant changes in gene expression after 45 min or 4 h of ACC treatment, but longer treatment times revealed a large number of differentially expressed genes, including the downregulation of the expression of a small group of phylogenetically related CLE peptides. Reduced expression of these group 1 CLEs in response to ACC leads to the activation of a transcription factor, LBD18, which promotes LR development. These results suggest that ACC acts to modulate multiple aspects of Arabidopsis root growth independently of ethylene via distinct transcriptional effects in the root meristem and LR precursor cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI