清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A multi-omic atlas of human embryonic skeletal development

生物 地图集(解剖学) 胚胎干细胞 计算生物学 进化生物学 解剖 遗传学 基因
作者
Ken To,Lijiang Fei,J. Patrick Pett,Kenny Roberts,Raphaël Blain,Krzysztof Polański,Tong Li,Nadav Yayon,Peng He,Chuan Xu,James Cranley,Madelyn Moy,Ruoyan Li,Kazumasa Kanemaru,Ni Huang,Stathis Megas,Laura Richardson,Rakeshlal Kapuge,Shani Perera,Elizabeth Tuck
出处
期刊:Nature [Nature Portfolio]
卷期号:635 (8039): 657-667 被引量:11
标识
DOI:10.1038/s41586-024-08189-z
摘要

Human embryonic bone and joint formation is determined by coordinated differentiation of progenitors in the nascent skeleton. The cell states, epigenetic processes and key regulatory factors that underlie lineage commitment of these cells remain elusive. Here we applied paired transcriptional and epigenetic profiling of approximately 336,000 nucleus droplets and spatial transcriptomics to establish a multi-omic atlas of human embryonic joint and cranium development between 5 and 11 weeks after conception. Using combined modelling of transcriptional and epigenetic data, we characterized regionally distinct limb and cranial osteoprogenitor trajectories across the embryonic skeleton and further described regulatory networks that govern intramembranous and endochondral ossification. Spatial localization of cell clusters in our in situ sequencing data using a new tool, ISS-Patcher, revealed mechanisms of progenitor zonation during bone and joint formation. Through trajectory analysis, we predicted potential non-canonical cellular origins for human chondrocytes from Schwann cells. We also introduce SNP2Cell, a tool to link cell-type-specific regulatory networks to polygenic traits such as osteoarthritis. Using osteolineage trajectories characterized here, we simulated in silico perturbations of genes that cause monogenic craniosynostosis and implicate potential cell states and disease mechanisms. This work forms a detailed and dynamic regulatory atlas of bone and cartilage maturation and advances our fundamental understanding of cell-fate determination in human skeletal development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anhuiwsy完成签到 ,获得积分10
8秒前
开放鸿涛完成签到,获得积分10
11秒前
sleet完成签到 ,获得积分10
47秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Smoiy完成签到 ,获得积分10
1分钟前
3分钟前
5分钟前
5分钟前
5分钟前
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
001完成签到 ,获得积分10
5分钟前
minuxSCI完成签到,获得积分10
5分钟前
6分钟前
充电宝应助张立人采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
张立人发布了新的文献求助10
7分钟前
开心每一天完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
10分钟前
10分钟前
在水一方应助可靠的寒风采纳,获得10
10分钟前
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
清逸之风完成签到 ,获得积分10
12分钟前
al完成签到 ,获得积分10
12分钟前
13分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686775
求助须知:如何正确求助?哪些是违规求助? 3237129
关于积分的说明 9829486
捐赠科研通 2949062
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738360